Molecular Triazine–Heptazine Junctions Promoting Exciton Dissociation for Overall Water Splitting with Visible Light

Author(s):  
Zhiming Pan ◽  
Minghui Liu ◽  
Guigang Zhang ◽  
Hangyu Zhuzhang ◽  
Xinchen Wang
Nanoscale ◽  
2021 ◽  
Author(s):  
Hu Liu ◽  
Mengqi Shen ◽  
Peng Zhou ◽  
Zhi Guo ◽  
Xinyang Liu ◽  
...  

Developing an efficient single component photocatalyst for overall water splitting under visible-light irradiation is extremely challenging. Herein, we report a metal-free graphitic carbon nitride (g-CxN4)-based nanosheet photocatalyst (x = 3.2,...


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2572
Author(s):  
Yanfei Fan ◽  
Yan Liu ◽  
Hongyu Cui ◽  
Wen Wang ◽  
Qiaoyan Shang ◽  
...  

Strontium Titanate has a typical perovskite structure with advantages of low cost and photochemical stability. However, the wide bandgap and rapid recombination of electrons and holes limited its application in photocatalysis. In this work, a SrTiO3 material with surface oxygen vacancies was synthesized via carbon reduction under a high temperature. It was successfully applied for photocatalytic overall water splitting to produce clean hydrogen energy under visible light irradiation without any sacrificial reagent for the first time. The photocatalytic overall water splitting ability of the as-prepared SrTiO3-C950 is attributed to the surface oxygen vacancies that can make suitable energy levels for visible light response, improving the separation and transfer efficiency of photogenerated carriers.


2017 ◽  
Vol 4 (10) ◽  
pp. 1691-1696 ◽  
Author(s):  
Mumei Han ◽  
Huibo Wang ◽  
Siqi Zhao ◽  
Lulu Hu ◽  
Hui Huang ◽  
...  

10%CoO/g-C3N4 exhibits good photocatalytic performance under visible light irradiation without any sacrificial reagents.


ChemSusChem ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1365-1373 ◽  
Author(s):  
Tianqi Wang ◽  
Zhifeng Jiang ◽  
Ka Him Chu ◽  
Dan Wu ◽  
Bo Wang ◽  
...  

ChemSusChem ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1807-1824 ◽  
Author(s):  
Takeshi Morikawa ◽  
Shunsuke Sato ◽  
Keita Sekizawa ◽  
Takeo Arai ◽  
Tomiko M. Suzuki

Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1706 ◽  
Author(s):  
Biao Wang ◽  
Xiaotian Wang ◽  
Peng Wang ◽  
Tie Yang ◽  
Hongkuan Yuan ◽  
...  

Visible-light-driven photocatalytic overall water splitting is deemed to be an ideal way to generate clean and renewable energy. The direct Z-scheme photocatalytic systems, which can realize the effective separation of photoinduced carriers and possess outstanding redox ability, have attracted a huge amount of interest. In this work, we have studied the photocatalytic performance of the bilayer MoSe2/HfS2 van der Waals (vdW) heterojunction following the direct Z-scheme mechanism by employing the hybrid density functional theory. Our calculated results show that the HfS2 and MoSe2 single layers in this heterojunction are used for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), respectively. The charge transfer between the two layers brought about an internal electric field pointing from the MoSe2 layer to the HfS2 slab, which can accelerate the separation of the photoinduced electron–hole pairs and support the Z-scheme electron migration near the interface. Excitingly, the optical absorption intensity of the MoSe2/HfS2 heterojunction is enhanced in the visible and infrared region. As a result, these results reveal that the MoSe2/HfS2 heterojunction is a promising direct Z-scheme photocatalyst for photocatalytic overall water splitting.


Sign in / Sign up

Export Citation Format

Share Document