Field-Induced Conformational Change in a Single-Molecule-Graphene–Nanoribbon Junction: Effect of Vibrational Energy Redistribution

2016 ◽  
Vol 120 (50) ◽  
pp. 28808-28819 ◽  
Author(s):  
Vincent Pohl ◽  
Jean Christophe Tremblay
1995 ◽  
Vol 102 ◽  
pp. 167 ◽  
Author(s):  
Lucia Lubich ◽  
Oleg V. Boyarkin ◽  
Rebecca D. F. Settle ◽  
David S. Perry ◽  
Thomas R. Rizzo

Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3105 ◽  
Author(s):  
Henning Höfig ◽  
Michele Cerminara ◽  
Ilona Ritter ◽  
Antonie Schöne ◽  
Martina Pohl ◽  
...  

Bacterial periplasmic binding proteins (PBPs) undergo a pronounced ligand-induced conformational change which can be employed to monitor ligand concentrations. The most common strategy to take advantage of this conformational change for a biosensor design is to use a Förster resonance energy transfer (FRET) signal. This can be achieved by attaching either two fluorescent proteins (FPs) or two organic fluorescent dyes of different colors to the PBPs in order to obtain an optical readout signal which is closely related to the ligand concentration. In this study we compare a FP-equipped and a dye-labeled version of the glucose/galactose binding protein MglB at the single-molecule level. The comparison demonstrates that changes in the FRET signal upon glucose binding are more pronounced for the FP-equipped sensor construct as compared to the dye-labeled analog. Moreover, the FP-equipped sensor showed a strong increase of the FRET signal under crowding conditions whereas the dye-labeled sensor was not influenced by crowding. The choice of a labeling scheme should therefore be made depending on the application of a FRET-based sensor.


2020 ◽  
Author(s):  
Ricky C. Cheng ◽  
Ayush Krishnamoorti ◽  
Vladimir Berka ◽  
Ryan J Durham ◽  
Vasanthi Jayaraman ◽  
...  

Abstract“CLC” transporters catalyze the exchange of chloride ions for protons across cellular membranes. As secondary active transporters, CLCs must alternately allow ion access to and from the extracellular and intracellular sides of the membrane, adopting outward-facing and inward-facing conformational states. Here, we use single-molecule Förster resonance energy transfer (smFRET) to monitor the conformational state of CLC-ec1, an E. coli homolog for which high-resolution structures of occluded and outward-facing states are known. Since each subunit within the CLC homodimer contains its own transport pathways for chloride and protons, we developed a labeling strategy to follow conformational change within a subunit, without crosstalk from the second subunit of the dimer. Using this strategy, we evaluated smFRET efficiencies for labels positioned on the extracellular side of the protein, to monitor the status of the outer permeation pathway. When [H+] is increased to enrich the outward-facing state, the smFRET efficiencies for this pair decrease. In a triple-mutant CLC-ec1 that mimics the protonated state of the protein and is known to favor the outward-facing conformation, the lower smFRET efficiency is observed at both low and high [H+]. These results confirm that the smFRET assay is following the transition to the outward-facing state and demonstrate the feasibility of using smFRET to monitor the relatively small (~1 Å) motions involved in CLC transporter conformational change. Using the smFRET assay, we show that the conformation of the partner subunit does not influence the conformation of the subunit being monitored by smFRET, thus providing evidence for the independence of the two subunits in the transport process.SUMMARYCheng, Krishnamoorti et al. use single-molecule Förster energy resonance transfer measurements to monitor the conformation of a CLC transporter and to show that the conformational state is not influenced by the neighboring subunit.


2020 ◽  
Vol 22 (20) ◽  
pp. 11139-11173 ◽  
Author(s):  
Sourav Karmakar ◽  
Srihari Keshavamurthy

The onset of facile intramolecular vibrational energy flow can be related to features in the connected network of anharmonic resonances in the classical phase space.


2019 ◽  
Vol 116 (3) ◽  
pp. 315a
Author(s):  
Xinyue Zhang ◽  
Yingzhen Wang ◽  
Samuel Hawkins ◽  
Andrew Burcke ◽  
Shi-Jie Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document