Halogen Substituent Effects on Concentration-Controlled Self-Assembly of Fluorenone Derivatives: Halogen Bond versus Hydrogen Bond

2019 ◽  
Vol 123 (7) ◽  
pp. 4349-4359 ◽  
Author(s):  
Meiqiu Dong ◽  
Kai Miao ◽  
Juntian Wu ◽  
Xinrui Miao ◽  
Jinxing Li ◽  
...  
2014 ◽  
Vol 70 (a1) ◽  
pp. C630-C630
Author(s):  
Giuseppe Resnati ◽  
Pierangelo Metrangolo ◽  
Giancarlo Terraneo ◽  
Gabriella Cavallo

According to the definition recommended by IUPAC [1], a halogen bond (XB) occurs when there is evidence of a net attractive interaction between an electrophilic region in a halogen atom and a nucleophilic region in another atom. The halogen bond has many similarities with the hydrogen bond (HB) and here we discuss the specific profile of the two interactions. We also show how the cooperation between the two interactions afford crystalline systems possessing unique and useful properties. For instance, the diiodide, dibromide, and dichloride salts of the 1,6-bis(trimethylammonium)hexane cation (hexamethonium, HMET2+, cation) react with two equivalents of diiodine in a solid-gas reaction and the corresponding bis-trihalides (halogen bonded adducts) are formed [2]. No cavities are present in the starting dihalides and the observed behavior reveals the dynamically porous character of bis(trimethylammonium)alkane dihalides. In the obtained bis-trihalides a net of X-···H-C HBs (X=Cl, Br, I) plays a decisive role in controlling the crystal packing: Four cationic columns embrace an anionic twin column formed by stacking of trihalide dimers. When heated, these bis-trihalides lose one diiodine molecule and the virtually unknown tetrahalide dianions [I4]2-, [I2Br2] 2-, and [I2Cl2]2-are formed. These dianions are the product of the double pinning of a diiodine molecule by two halide anions via strong XBs. The last two tetrahalides were never obtained in solution. The confined environment of dynamically porous materials clearly confers useful synthetic opportunities relative to solution-state processes. Other cases are described wherein XB and HB cooperate in driving self-assembly processes which afford solid materials endowed with useful properties. For instance, we will discuss the formation of two-component supramolecular gels [3] wherein a bis-urea and a diiodoarene self-assemble via cooperative XB and HB.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 198
Author(s):  
Nucharee Chongboriboon ◽  
Kodchakorn Samakun ◽  
Winya Dungkaew ◽  
Filip Kielar ◽  
Mongkol Sukwattanasinitt ◽  
...  

Halogen bonding is one of the most interesting noncovalent attractions capable of self-assembly and recognition processes in both solution and solid phase. In this contribution, we report on the formation of two solvates of tetrabromoterephthalic acid (H2Br4tp) with acetonitrile (MeCN) and methanol (MeOH) viz. H2Br4tp·2MeCN (1MeCN) and H2Br4tp·2MeOH (2MeOH). The host structures of both 1MeCN and 2MeOH are assembled via the occurrence of simultaneous Br···Br, Br···O, and Br···π halogen bonding interactions, existing between the H2Br4tp molecular tectons. Among them, the cooperative effect of the dominant halogen bond in combination with hydrogen bonding interactions gave rise to different supramolecular assemblies, whereas the strength of the halogen bond depends on the type of hydrogen bond between the molecules of H2Br4tp and the solvents. These materials show a reversible release/resorption of solvent molecules accompanied by evident crystallographic phase transitions.


2014 ◽  
Vol 70 (4) ◽  
pp. o418-o418
Author(s):  
Palak Agarwal ◽  
Pragati Mishra ◽  
Nikita Gupta ◽  
Neelam ◽  
Priyaranjan Sahoo ◽  
...  

In the title compound, 2C14H8N4O6·CH2Cl2, the dichloromethane solvent molecule resides on a crystallographic twofold axis. The mean plane of the phthalisoimide ring is oriented at a dihedral angle of 32.93 (12)° with respect to the nitro-substituted benzene ring. An intramolecular N—H...O hydrogen bond occurs. The crystal packing features a short Cl...O halogen-bond interaction [3.093 (3) Å].


2018 ◽  
Vol 5 (5) ◽  
pp. 180247 ◽  
Author(s):  
Yuanming Zhang ◽  
Tingting Sun ◽  
Wei Jiang ◽  
Guangting Han

In this paper, the crystalline modification of a rare earth nucleating agent (WBG) for isotactic polypropylene (PP) based on its supramolecular self-assembly was investigated by differential scanning calorimetry, wide-angle X-ray diffraction and polarized optical microscopy. In addition, the relationship between the self-assembly structure of the nucleating agent and the crystalline structure, as well as the possible reason for the self-assembly behaviour, was further studied. The structure evolution of WBG showed that the self-assembly structure changed from a needle-like structure to a dendritic structure with increase in the content of WBG. When the content of WBG exceeded a critical value (0.4 wt%), it self-assembled into a strip structure. This revealed that the structure evolution of WBG contributed to the K β and the crystallization morphology of PP with different content of WBG. In addition, further studies implied that the behaviour of self-assembly was a liquid–solid transformation of WBG, followed by a liquid–liquid phase separation of molten isotactic PP and WBG. The formation of the self-assembly structure was based on the free molecules by hydrogen bond dissociation while being heated, followed by aggregation into another structure by hydrogen bond association while being cooled. Furthermore, self-assembly behaviour depends largely on the interaction between WBG themselves.


Author(s):  
Ruben D. Parra ◽  
Álvaro Castillo

The geometries and energetics of molecular self-assembly structures that contain a sequential network of cyclic halogen-bonding interactions are investigated theoretically. The strength of the halogen-bonding interactions is assessed by examining binding energies, electron charge transfer (NBO analysis) and electron density at halogen-bond critical points (AIM theory). Specifically, structural motifs having intramolecular N—X...N (X= Cl, Br, or I) interactions and the ability to drive molecular self-assemblyviathe same type of interactions are used to construct larger self-assemblies of up to three unit motifs. N—X...N halogen-bond cooperativity as a function of the self-assembly size, and the nature of the halogen atom is also examined. The cyclic network of the halogen-bonding interactions provides a suitable cavity rich in electron density (from the halogen atom lone pairs not involved in the halogen bonds) that can potentially bind an electron-deficient species such as a metal ion. This possibility is explored by examining the ability of the N—X...N network to bind Na+. Likewise, molecular self-assembly structures driven by the weaker C—X...N halogen-bonding interactions are investigated and the results compared with those of their N—X...N counterparts.


Sign in / Sign up

Export Citation Format

Share Document