Influence of the Cation on the Surface Electronic Band Structure and Magnetic Properties of Mn:ZnS and Mn:CdS Quantum Dot Thin Films

2019 ◽  
Vol 123 (40) ◽  
pp. 24890-24898 ◽  
Author(s):  
Andrew J. Yost ◽  
Thilini K. Ekanayaka ◽  
Gautam Gurung ◽  
Gaurab Rimal ◽  
Sabit Horoz ◽  
...  
2002 ◽  
Vol 507-510 ◽  
pp. 223-228 ◽  
Author(s):  
L. Plucinski ◽  
T. Strasser ◽  
B.J. Kowalski ◽  
K. Rossnagel ◽  
T. Boetcher ◽  
...  

Author(s):  
Tai Ma ◽  
Jia Wang ◽  
Xu Li ◽  
Min Pu

Two-dimensional (2D) materials with robust ferromagnetism properties have high potentials for application in the field of spintronics. However, extensively pursued 2D sheets, including pure graphene, monolayer BN, and layered transition metal dichalcogenides, are either nonmagnetic or weakly magnetic. The elastic, electronic and magnetic properties of monolayer CrN are calculated using the plane wave pseudo potential method based on first-principles density function theory. Upon determining through calculation that the structure of the monolayer CrN nanosheet is stable, its layer modulus [Formula: see text] shows that its strain resistance is stronger than that of graphene. Through strain analysis, materials with a monolayer CrN type of structure can be obtained. It is determined that 10% of the change in equilibrium area is still applicable to the 2D EOS, showing that this structure is quite stable. The spin-polarized electronic band structure is also calculated under different plane symmetry strains. The plane strain can be used to effectively adjust the metallic and magnetic properties of the material. Analyses of the band structure and density of states reveal that this material is half-metallic, where the origin of the ferromagnetism is related to [Formula: see text]–[Formula: see text] exchange interactions between the Cr and N atoms. Monolayer CrN has semimetallic properties and strong ferromagnetic (FM) properties. The FM effect can enhance the stability of the material. The results show that monolayer CrN is a semimetallic material with good elastic properties and a strong FM property. This material is therefore expected to have good application rospects in the field of spin electronics.


2018 ◽  
Vol 2 (10) ◽  
pp. 2224-2236 ◽  
Author(s):  
Wai Ling Kwong ◽  
Pramod Koshy ◽  
Judy N. Hart ◽  
Wanqiang Xu ◽  
Charles C. Sorrell

Decoupled effects of crystallographic {002} orientation and oxygen vacancies on the electronic band structure of monoclinic WO3 films.


Author(s):  
Hua Li ◽  
Gang Li

In this work, we model the strain effects on the electrical transport properties of Si/Ge nanocomposite thin films. We utilize a two-band k·p theory to calculate the variation of the electronic band structure as a function of externally applied strains. By using the modified electronic band structure, electrical conductivity of the Si/Ge nanocomposites is calculated through a self-consistent electron transport analysis, where a nonequilibrium Green’s function (NEGF) is coupled with the Poisson equation. The results show that both the tensile uniaxial and biaxial strains increase the electrical conductivity of Si/Ge nanocomposite. The effects are more evident in the biaxial strain cases.


2011 ◽  
Vol 110 (10) ◽  
pp. 103503 ◽  
Author(s):  
Jun-Woo Park ◽  
Hyungkeun Jang ◽  
Sung Kim ◽  
Suk-Ho Choi ◽  
Hosun Lee ◽  
...  

2005 ◽  
Vol 98 (9) ◽  
pp. 094108 ◽  
Author(s):  
Hosun Lee ◽  
Youn Seon Kang ◽  
Sang-Jun Cho ◽  
Bo Xiao ◽  
Hadis Morkoç ◽  
...  

2011 ◽  
Vol 12 (1) ◽  
pp. 195-201 ◽  
Author(s):  
R. Matsubara ◽  
M. Sakai ◽  
K. Kudo ◽  
N. Yoshimoto ◽  
I. Hirosawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document