Self-Assembly Evolution of N-Terminal Aromatic Amino Acids with Transient Supramolecular Chirality

2020 ◽  
Vol 11 (4) ◽  
pp. 1490-1496 ◽  
Author(s):  
Shixin Xue ◽  
Nan Zhang ◽  
Xiaoling Hu ◽  
Yongfei Zeng ◽  
Jingbo Zhang ◽  
...  
2018 ◽  
Author(s):  
Nidhi Gour ◽  
Bharti Koshti ◽  
Chandra Kanth P. ◽  
Dhruvi Shah ◽  
Vivek Shinh Kshatriya ◽  
...  

We report for the very first time self-assembly of Cysteine and Methionine to discrenible strucutres under neutral condition. To get insights into the structure formation, thioflavin T and Congo red binding assays were done which revealed that aggregates may not have amyloid like characteristics. The nature of interactions which lead to such self-assemblies was purported by coincubating assemblies in urea and mercaptoethanol. Further interaction of aggregates with short amyloidogenic dipeptide diphenylalanine (FF) was assessed. While cysteine aggregates completely disrupted FF fibres, methionine albeit triggered fibrillation. The cytotoxicity assays of cysteine and methionine structures were performed on Human Neuroblastoma IMR-32 cells which suggested that aggregates are not cytotoxic in nature and thus, may not have amyloid like etiology. The results presented in the manuscript are striking, since to the best of our knowledge,this is the first report which demonstrates that even non-aromatic amino acids (cysteine and methionine) can undergo spontaneous self-assembly to form ordered aggregates.


2018 ◽  
Vol 20 (48) ◽  
pp. 30525-30536 ◽  
Author(s):  
Sahin Uyaver ◽  
Helen W. Hernandez ◽  
M. Gokhan Habiboglu

Common structures identified in the assembly of aromatic amino acids and their mixtures include the four-fold tube (a and b) and the zig-zag structure (c and d).


2021 ◽  
Author(s):  
Nidhi Gour ◽  
Vivekshinh Kshtriya ◽  
Bharti Koshti ◽  
Hanuman Narode ◽  
Soumick Naskar

2018 ◽  
Author(s):  
Nidhi Gour ◽  
Bharti Koshti ◽  
Chandra Kanth P. ◽  
Dhruvi Shah ◽  
Vivek Shinh Kshatriya ◽  
...  

We report for the very first time self-assembly of Cysteine and Methionine to discrenible strucutres under neutral condition. To get insights into the structure formation, thioflavin T and Congo red binding assays were done which revealed that aggregates may not have amyloid like characteristics. The nature of interactions which lead to such self-assemblies was purported by coincubating assemblies in urea and mercaptoethanol. Further interaction of aggregates with short amyloidogenic dipeptide diphenylalanine (FF) was assessed. While cysteine aggregates completely disrupted FF fibres, methionine albeit triggered fibrillation. The cytotoxicity assays of cysteine and methionine structures were performed on Human Neuroblastoma IMR-32 cells which suggested that aggregates are not cytotoxic in nature and thus, may not have amyloid like etiology. The results presented in the manuscript are striking, since to the best of our knowledge,this is the first report which demonstrates that even non-aromatic amino acids (cysteine and methionine) can undergo spontaneous self-assembly to form ordered aggregates.


2018 ◽  
Author(s):  
Nidhi Gour ◽  
Bharti Koshti ◽  
Chandra Kanth P. ◽  
Dhruvi Shah ◽  
Vivek Shinh Kshatriya ◽  
...  

We report for the very first time self-assembly of Cysteine and Methionine to discrenible strucutres under neutral condition. The nature of interactions which lead to such self-assemblies was purported by coincubating assemblies in urea and mercaptoethanol. Further interaction of aggregates with short amyloidogenic dipeptide diphenylalanine (FF) was assessed. While cysteine aggregates completely disrupted FF fibres, methionine albeit triggered fibrillation. . The results presented in the manuscript are striking, since to the best of our knowledge,this is the first report which demonstrates that even non-aromatic amino acids (cysteine and methionine) can undergo spontaneous self-assembly to form ordered aggregates.


2021 ◽  
Author(s):  
Nidhi Gour ◽  
Vivekshinh Kshtriya ◽  
Bharti Koshti ◽  
Hanuman Narode ◽  
Soumick Naskar

Gels ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 43
Author(s):  
Paolo Ravarino ◽  
Demetra Giuri ◽  
Davide Faccio ◽  
Claudia Tomasini

Physical hydrogels are supramolecular materials obtained by self-assembly of small molecules called gelators. Aromatic amino acids and small peptides containing aromatic rings are good candidates as gelators due to their ability to form weak bonds as π-π interactions and hydrogen bonds between NH and CO of the peptide chain. In this paper we show our results in the preparation of a transparent hydrogel that was obtained by self-assembly of a fluorine-containing dipeptide that relies on the additional formation of halogen bonds due to the fluorine atoms contained in the dipeptide. We used Boc-D-F2Phe-L-Oxd-OH (F2Phe = 3,4-difluorophenylalainine; Oxd = 4-methyl-5-carboxy-oxazolidin-2-one) that formed a strong and transparent hydrogel in 0.5% w/w concentration at pH = 4.2. The formation of a hydrogel made of unnatural fluorinated amino acids may be of great interest in the evaluation of patients with parkinsonian syndromes and may be used for controlled release.


Sign in / Sign up

Export Citation Format

Share Document