Orbital Design of Two-Dimensional Transition-Metal Peroxide Kagome Crystals with Anionogenic Dirac Half-Metallicity

Author(s):  
Daoxiong Wu ◽  
Haifeng Lv ◽  
Zhiwen Zhuo ◽  
Xingxing Li ◽  
Xiaojun Wu ◽  
...  
Author(s):  
Yanxia Wang ◽  
Xue Jiang ◽  
Yi Wang ◽  
Jijun Zhao

Exploring two-dimensional (2D) ferromagnetic materials with intrinsic Dirac half-metallicity is crucial for the development of next-generation spintronic devices. Based on first-principles calculations, here we propose a simple valence electron-counting rule...


2017 ◽  
Vol 5 (3) ◽  
pp. 727-732 ◽  
Author(s):  
Junyan Liu ◽  
Zhifeng Liu ◽  
Tielei Song ◽  
Xin Cui

A promising 2D material (1T-TaN2 monolayer) with intrinsic half-metallicity and ferromagnetism has been characterized by a first-principles computational search.


2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Arqum Hashmi ◽  
Kenta Nakanishi ◽  
Muhammad Umar Farooq ◽  
Tomoya Ono

Abstract In contrast to the current research on two-dimensional (2D) materials, which is mainly focused on graphene and transition metal dichalcogenide-like structures, studies on 2D transition metal oxides are rare. By using ab initio calculations along with Monte Carlo simulations and nonequilibrium Green’s function method, we demonstrate that the transition metal oxide monolayer (ML) of Cr2O3 is an ideal candidate for next-generation spintronics applications. 2D Cr2O3 has honeycomb-kagome lattice, where the Dirac and strongly correlated fermions coexist around the Fermi level. Furthermore, the spin exchange coupling constant shows strong ferromagnetic (FM) interaction between Cr atoms. Cr2O3 ML has a robust half-metallic behavior with a large spin gap of ~3.9 eV and adequate Curie temperature. Interestingly, an intrinsic Ising FM characteristic is observed with a giant perpendicular magnetocrystalline anisotropy energy of ~0.9 meV. Most remarkably, nonequilibrium Green’s function calculations reveal that the Cr2O3 ML exhibits an excellent spin filtering effect.


Author(s):  
Seungjun Lee ◽  
Hussain Alsalman ◽  
Wei Jiang ◽  
Tony Low ◽  
Young-Kyun Kwon

Doklady BGUIR ◽  
2020 ◽  
Vol 18 (7) ◽  
pp. 87-95
Author(s):  
M. S. Baranava ◽  
P. A. Praskurava

The search for fundamental physical laws which lead to stable high-temperature ferromagnetism is an urgent task. In addition to the already synthesized two-dimensional materials, there remains a wide list of possible structures, the stability of which is predicted theoretically. The article suggests the results of studying the electronic properties of MAX3 (M = Cr, Fe, A = Ge, Si, X = S, Se, Te) transition metals based compounds with nanostructured magnetism. The research was carried out using quantum mechanical simulation in specialized VASP software and calculations within the Heisenberg model. The ground magnetic states of twodimensional MAX3 and the corresponding energy band structures are determined. We found that among the systems under study, CrGeTe3 is a semiconductor nanosized ferromagnet. In addition, one is a semiconductor with a bandgap of 0.35 eV. Other materials are antiferromagnetic. The magnetic moment in MAX3 is localized on the transition metal atoms: in particular, the main one on the d-orbital of the transition metal atom (and only a small part on the p-orbital of the chalcogen). For CrGeTe3, the exchange interaction integral is calculated. The mechanisms of the formation of magnetic order was established. According to the obtained exchange interaction integrals, a strong ferromagnetic order is formed in the semiconductor plane. The distribution of the projection density of electronic states indicates hybridization between the d-orbital of the transition metal atom and the p-orbital of the chalcogen. The study revealed that the exchange interaction by the mechanism of superexchange is more probabilistic.


Nano Letters ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 5111-5118 ◽  
Author(s):  
Carmen Rubio-Verdú ◽  
Antonio M. Garcı́a-Garcı́a ◽  
Hyejin Ryu ◽  
Deung-Jang Choi ◽  
Javier Zaldı́var ◽  
...  

ACS Nano ◽  
2021 ◽  
Author(s):  
Miao Zhang ◽  
Martina Lihter ◽  
Tzu-Heng Chen ◽  
Michal Macha ◽  
Archith Rayabharam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document