In-Operando Detection of the Physical Property Changes of an Interfacial Electrolyte during the Li-Metal Electrode Reaction by Atomic Force Microscopy

Langmuir ◽  
2020 ◽  
Vol 36 (33) ◽  
pp. 9701-9708
Author(s):  
Mitsunori Kitta
2020 ◽  
Author(s):  
Mitsunori Kitta

This manuscript propose the operando detection technique of the physical properties change of electrolyte during Li-metal battery operation.The physical properties of electrolyte solution such as viscosity (η) and mass densities (ρ) highly affect the feature of electrochemical Li-metal deposition on the Li-metal electrode surface. Therefore, the operando technique for detection these properties change near the electrode surface is highly needed to investigate the true reaction of Li-metal electrode. Here, this study proved that one of the atomic force microscopy based analysis, energy dissipation analysis of cantilever during force curve motion, was really promising for the direct investigation of that. The solution drag of electrolyte, which is controlled by the physical properties, is directly concern the energy dissipation of cantilever motion. In the experiment, increasing the energy dissipation was really observed during the Li-metal dissolution (discharge) reaction, understanding as the increment of η and ρ of electrolyte via increasing of Li-ion concentration. Further, the dissipation energy change was well synchronized to the charge-discharge reaction of Li-metal electrode.This study is the first report for direct observation of the physical properties change of electrolyte on Li-metal electrode reaction, and proposed technique should be widely interesting to the basic interfacial electrochemistry, fundamental researches of solid-liquid interface, as well as the battery researches.


2020 ◽  
Author(s):  
Mitsunori Kitta

This manuscript propose the operando detection technique of the physical properties change of electrolyte during Li-metal battery operation.The physical properties of electrolyte solution such as viscosity (η) and mass densities (ρ) highly affect the feature of electrochemical Li-metal deposition on the Li-metal electrode surface. Therefore, the operando technique for detection these properties change near the electrode surface is highly needed to investigate the true reaction of Li-metal electrode. Here, this study proved that one of the atomic force microscopy based analysis, energy dissipation analysis of cantilever during force curve motion, was really promising for the direct investigation of that. The solution drag of electrolyte, which is controlled by the physical properties, is directly concern the energy dissipation of cantilever motion. In the experiment, increasing the energy dissipation was really observed during the Li-metal dissolution (discharge) reaction, understanding as the increment of η and ρ of electrolyte via increasing of Li-ion concentration. Further, the dissipation energy change was well synchronized to the charge-discharge reaction of Li-metal electrode.This study is the first report for direct observation of the physical properties change of electrolyte on Li-metal electrode reaction, and proposed technique should be widely interesting to the basic interfacial electrochemistry, fundamental researches of solid-liquid interface, as well as the battery researches.


Nature Energy ◽  
2017 ◽  
Vol 3 (1) ◽  
pp. 46-52 ◽  
Author(s):  
Michael R. Nellist ◽  
Forrest A. L. Laskowski ◽  
Jingjing Qiu ◽  
Hamed Hajibabaei ◽  
Kevin Sivula ◽  
...  

Author(s):  
Alexander Olbrich ◽  
Bernd Ebersberger ◽  
Christian Boit

Abstract In this work, we introduce Conducting Atomic Force Microscopy (C-AFM) as a novel technique for the determination of the local effective electrical oxide thickness with a lateral resolution of a few nanometers and a thickness resolution in the sub ångström range. In this technique the conductive tip of an AFM, which is in mechanical contact with the bare oxide surface, is used as metal electrode to define a local MOS structure with nanometer lateral extension. Oxide thickness determination is done by fitting the local I-V curves to the well known Fowler Nordheim tunneling equation with a thickness sensitivity in the sub-ångström range. In addition, tunneling current images at constant applied voltage can be obtained simultaneously to the oxide surface topography. We present a scheme which allows the conversion of the tunneling current images into maps of the local electrical oxide thickness. Several examples demonstrate the versatile and far-reaching application of C-AFM to R&D and failure analysis


2021 ◽  
Vol 218 (24) ◽  
pp. 2170065
Author(s):  
Shova Neupane ◽  
Andrea Valencia-Ramírez ◽  
Patricia Losada-Pérez ◽  
Frank Uwe Renner

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Yang-Soo Kim ◽  
Soon-Ki Jeong

The electrochemical processes occurring at the surface of a highly ordered pyrolytic graphite (HOPG) electrode were investigated byin situatomic force microscopy (AFM) to understand the solvent cointercalation involved in the formation of a surface film. AFM images were recorded under the conditions that AFM probe does not affect the electrode reaction. The AFM images show the morphological changes occurring at the electrode surface, indicating that two different types of reactions occurred in the film formation at the surface of the electrode. The formation of a blister structure was observed on the graphite surface, because of the decomposition of solvated lithium ions produced in the electrolyte solution and intercalation between the graphite layer and particulate materials. The solvent cointercalation reaction leading to the blister structure was more pronounced for the HOPG electrode with a higher value of mosaic spread.


Author(s):  
CE Bracker ◽  
P. K. Hansma

A new family of scanning probe microscopes has emerged that is opening new horizons for investigating the fine structure of matter. The earliest and best known of these instruments is the scanning tunneling microscope (STM). First published in 1982, the STM earned the 1986 Nobel Prize in Physics for two of its inventors, G. Binnig and H. Rohrer. They shared the prize with E. Ruska for his work that had led to the development of the transmission electron microscope half a century earlier. It seems appropriate that the award embodied this particular blend of the old and the new because it demonstrated to the world a long overdue respect for the enormous contributions electron microscopy has made to the understanding of matter, and at the same time it signalled the dawn of a new age in microscopy. What we are seeing is a revolution in microscopy and a redefinition of the concept of a microscope.Several kinds of scanning probe microscopes now exist, and the number is increasing. What they share in common is a small probe that is scanned over the surface of a specimen and measures a physical property on a very small scale, at or near the surface. Scanning probes can measure temperature, magnetic fields, tunneling currents, voltage, force, and ion currents, among others.


Sign in / Sign up

Export Citation Format

Share Document