Scanning tunneling microscopy and atomic force microscopy: New tools for biology

Author(s):  
CE Bracker ◽  
P. K. Hansma

A new family of scanning probe microscopes has emerged that is opening new horizons for investigating the fine structure of matter. The earliest and best known of these instruments is the scanning tunneling microscope (STM). First published in 1982, the STM earned the 1986 Nobel Prize in Physics for two of its inventors, G. Binnig and H. Rohrer. They shared the prize with E. Ruska for his work that had led to the development of the transmission electron microscope half a century earlier. It seems appropriate that the award embodied this particular blend of the old and the new because it demonstrated to the world a long overdue respect for the enormous contributions electron microscopy has made to the understanding of matter, and at the same time it signalled the dawn of a new age in microscopy. What we are seeing is a revolution in microscopy and a redefinition of the concept of a microscope.Several kinds of scanning probe microscopes now exist, and the number is increasing. What they share in common is a small probe that is scanned over the surface of a specimen and measures a physical property on a very small scale, at or near the surface. Scanning probes can measure temperature, magnetic fields, tunneling currents, voltage, force, and ion currents, among others.

COSMOS ◽  
2007 ◽  
Vol 03 (01) ◽  
pp. 1-21 ◽  
Author(s):  
XIAN NING XIE ◽  
HONG JING CHUNG ◽  
ANDREW THYE SHEN WEE

Nanotechnology is vital to the fabrication of integrated circuits, memory devices, display units, biochips and biosensors. Scanning probe microscope (SPM) has emerged to be a unique tool for materials structuring and patterning with atomic and molecular resolution. SPM includes scanning tunneling microscopy (STM) and atomic force microscopy (AFM). In this chapter, we selectively discuss the atomic and molecular manipulation capabilities of STM nanolithography. As for AFM nanolithography, we focus on those nanopatterning techniques involving water and/or air when operated in ambient. The typical methods, mechanisms and applications of selected SPM nanolithographic techniques in nanoscale structuring and fabrication are reviewed.


2018 ◽  
Vol 60 (2) ◽  
pp. 255
Author(s):  
А.Е. Почтенный ◽  
А.Н. Лаппо ◽  
И.П. Ильюшонок

AbstractSome results of studying the direct-current (DC) conductivity of perylenetetracarboxylic acid dimethylimide films by cyclic oxygen thermal desorption are presented. The microscopic parameters of hopping electron transport over localized impurity and intrinsic states were determined. The bandgap width and the sign of major current carriers were determined by scanning probe microscopy methods (atomic force microscopy, scanning probe spectroscopy, and photoassisted Kelvin probe force microscopy). The possibility of the application of photoassisted scanning tunneling microscopy for the nanoscale phase analysis of photoconductive films is discussed.


1997 ◽  
Vol 04 (04) ◽  
pp. 637-649 ◽  
Author(s):  
F. TERÁN ARCE ◽  
M. E. VELA ◽  
R. C. SALVAREZZA ◽  
A. J. ARVIA

The structures resulting from 1-dodecanethiol, 1-butanethiol and 1,9-nonanedithiol films produced on highly oriented pyrolytic graphite (HOPG) and gold(111) have been comparatively studied by scanning probe microscopies. Molecular resolution images resulting from atomic force microscopy (AFM) and scanning tunneling microscopy (STM) of different thiol films show the formation of arrays of molecules parallel to the HOPG surface. The electrochemical response of the ferro-ferricyanide reaction was used to test the characteristics of electron transfer processes in thiol-covered HOPG as compared to the bare substrate. The decrease in the heterogeneous rate constant for the test reaction appears to be directly related to the degree of film thickness uniformity. For comparison, films with the same kind of thiols were produced on Au(111). Although the electrochemical characteristics of these films appear to be the same irrespective of the substrate nature, the structure of the films on Au(111) is different from that produced on HOPG.


1998 ◽  
Vol 528 ◽  
Author(s):  
Franck Bocquet ◽  
Camille Cohen ◽  
Didier Schmaus ◽  
André Rocher ◽  
Jacques Crestou ◽  
...  

AbstractThe same specimen of Pb/Cu grown under Ultra High Vacuum (UHV) conditions has been investigated by Scanning Tunneling Microscopy (STM), Atomic Force Microscopy (AFM) and Transmission Electron Microscopy (TEM). We show that the information obtained by these techniques is consistent when comparable, and complementary. In particular, three different morphologies of Pb islands with specific orientation relationship are observed; AFM reveals the faceted shape of the islands; STM permits an accurate determination of the atomic structure of the facets; TEM moir6 patterns reveal that Pb islands are well relaxed.


1992 ◽  
Vol 280 ◽  
Author(s):  
E. Chason ◽  
Charles M. Falco ◽  
A. Ourmazd ◽  
E. F. Schubert ◽  
J. M. Slaughter ◽  
...  

ABSTRACTA panel discussion on interface roughness was held at the Fall 1992 Materials Research Society meeting. We present a summary of the results presented by the invited speakers on the application and interpretation of X-ray reflectivity, atomic force microscopy (AFM), scanning tunneling microscopy (STM), photoluminescence and transmission electron microscopy. A transcript of the moderated discussion is provided in the final section.


Sign in / Sign up

Export Citation Format

Share Document