Canonical and 1-Deoxy(methyl) Sphingoid Bases: Tackling the Effect of the Lipid Structure on Membrane Biophysical Properties

Langmuir ◽  
2020 ◽  
Vol 36 (21) ◽  
pp. 6007-6016
Author(s):  
Tania C.B. Santos ◽  
Alexandra Vaz ◽  
Ana E. Ventura ◽  
Essa M. Saied ◽  
Christoph Arenz ◽  
...  
2015 ◽  
Vol 396 (6-7) ◽  
pp. 597-609 ◽  
Author(s):  
Ana C. Carreira ◽  
Ana E. Ventura ◽  
Ana R.P. Varela ◽  
Liana C. Silva

Abstract From the most simple sphingoid bases to their complex glycosylated derivatives, several sphingolipid species were shown to have a role in fundamental cellular events and/or disease. Increasing evidence places lipid-lipid interactions and membrane structural alterations as central mechanisms underlying the action of these lipids. Understanding how these molecules exert their biological roles by studying their impact in the physical properties and organization of membranes is currently one of the main challenges in sphingolipid research. Herein, we review the progress in the state-of-the-art on the biophysical properties of sphingolipid-containing membranes, focusing on sphingosine, ceramides, and glycosphingolipids.


Author(s):  
Gerson-Dirceu López ◽  
Elizabeth Suesca ◽  
Gerardo Álvarez-Rivera ◽  
Adriana E. Rosato ◽  
Elena Ibáñez ◽  
...  

CJC Open ◽  
2020 ◽  
Author(s):  
Jason Z. Cui ◽  
Kevin C. Harris ◽  
Koen Raedschelders ◽  
Zsuzsanna Hollander ◽  
James E. Potts ◽  
...  

2021 ◽  
Vol 141 (5) ◽  
pp. S23
Author(s):  
G. Boyer ◽  
G. Bellemère ◽  
C. de Belilovsky ◽  
C. Baudouin

2021 ◽  
Vol 7 (3) ◽  
pp. eabd4235
Author(s):  
P. Pradhan ◽  
R. Toy ◽  
N. Jhita ◽  
A. Atalis ◽  
B. Pandey ◽  
...  

Innate immune responses to pathogens are driven by co-presentation of multiple pathogen-associated molecular patterns (PAMPs). Combinations of PAMPs can trigger synergistic immune responses, but the underlying molecular mechanisms of synergy are poorly understood. Here, we used synthetic particulate carriers co-loaded with monophosphoryl lipid A (MPLA) and CpG as pathogen-like particles (PLPs) to dissect the signaling pathways responsible for dual adjuvant immune responses. PLP-based co-delivery of MPLA and CpG to GM-CSF–driven mouse bone marrow–derived antigen-presenting cells (BM-APCs) elicited synergistic interferon-β (IFN-β) and interleukin-12p70 (IL-12p70) responses, which were strongly influenced by the biophysical properties of PLPs. Mechanistically, we found that MyD88 and interferon regulatory factor 5 (IRF5) were necessary for IFN-β and IL-12p70 production, while TRIF signaling was required for the synergistic response. Both the kinetics and magnitude of downstream TRAF6 and IRF5 signaling drove the synergy. These results identify the key mechanisms of synergistic Toll-like receptor 4 (TLR4)–TLR9 co-signaling in mouse BM-APCs and underscore the critical role of signaling kinetics and biophysical properties on the integrated response to combination adjuvants.


2020 ◽  
Vol 10 (6) ◽  
pp. 412-418
Author(s):  
Le Mei ◽  
Wenhui Shen ◽  
Xuwei Wu ◽  
Jie Liu ◽  
Dechang Li ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Alexia Stokes ◽  
Guillermo Angeles ◽  
Fabien Anthelme ◽  
Eduardo Aranda-Delgado ◽  
Isabelle Barois ◽  
...  

Abstract Objectives Altitude integrates changes in environmental conditions that determine shifts in vegetation, including temperature, precipitation, solar radiation and edaphogenetic processes. In turn, vegetation alters soil biophysical properties through litter input, root growth, microbial and macrofaunal interactions. The belowground traits of plant communities modify soil processes in different ways, but it is not known how root traits influence soil biota at the community level. We collected data to investigate how elevation affects belowground community traits and soil microbial and faunal communities. This dataset comprises data from a temperate climate in France and a twin study was performed in a tropical zone in Mexico. Data description The paper describes soil physical and chemical properties, climatic variables, plant community composition and species abundance, plant community traits, soil microbial functional diversity and macrofaunal abundance and diversity. Data are provided for six elevations (1400–2400 m) ranging from montane forest to alpine prairie. We focused on soil biophysical properties beneath three dominant plant species that structure local vegetation. These data are useful for understanding how shifts in vegetation communities affect belowground processes, such as water infiltration, soil aggregation and carbon storage. Data will also help researchers understand how plant communities adjust to a changing climate/environment.


Sign in / Sign up

Export Citation Format

Share Document