Rotation and Retention Dynamics of Rod-Shaped Colloids with Surface Charge Heterogeneity in Sphere-in-Cell Porous Media Model

Langmuir ◽  
2019 ◽  
Vol 35 (16) ◽  
pp. 5471-5483 ◽  
Author(s):  
Ke Li ◽  
Huilian Ma
2021 ◽  
Author(s):  
Meng Li ◽  
Lei He ◽  
Xiangwei Zhang ◽  
Haifeng Rong ◽  
Meiping Tong

<p>The wide utilization of plastic related products leads to the ubiquitous presence of plastic particles in natural environments. Plastic particles could interact with kaolinite (one type of typical clay particles abundant in environment) and form plastic-kaolinite heteroaggregates. The fate and transport of both plastic particles and kaolinite particles thus might be altered. The cotransport and deposition behaviors of micron-sized plastic particles (MPs) with different surface charge (both negative and positive surface charge) with kaolinite in porous media in both 5 and 25 mM NaCl solutions were investigated in present study. Both types of MPs (negatively charged carboxylate-modified MPs (CMPs) and positively charged amine-modified MPs (AMPs)) formed heteroaggregates with kaolinite particles under both solution conditions examined, however, CMPs and AMPs exhibited different cotransport behaviors with kaolinite. Specifically, the transport of both CMPs and kaolinite was increased under both ionic strength conditions when kaolinite and CMPs were copresent in suspensions. While, when kaolinite and positively charged AMPs were copresent in suspensions, negligible transport of both kaolinite and AMPs were observed under examined salt solution conditions. The competition deposition sites by kaolinite (the portion suspending in solution) with CMPs-kaolinite heteroaggregates led to the increased transport both CMPs and kaolinite when both types of colloids were copresent. In contrast, the formation of larger sized AMPs-kaolinite heteroaggregates with surface charge heterogeneity led to the negligible transport of both kaolinite and AMPs when they were copresent in suspensions. The results of this study show that when plastic particles and kaolinite particles are copresent in natural environments, their interaction with each other will affect their transport behaviors in porous media. The alteration in the transport of MPs or kaolinite (either increased or decreased transport) is highly correlated with the surface charge of MPs.</p>


2020 ◽  
Author(s):  
Taotao Lu ◽  
Benjamin S. Gilfedder ◽  
Sven Frei

<p>With the increasing use of nanoplastic products in our daily life, these particles will invariably enter into the subsurface environment. It is, therefore, vital to understand the transport and retention of nanoplastic particles in groundwater systems. Surface charge heterogeneity is one of the basic chemical-physical characteristics of aquifer materials, but little research has been conducted on this topic. This study aimed to understand how the interaction between the porous media, solution chemistry, and NP surface charge influences the transport and retention of PS-NPs in the subsurface. 25 mg/L polystyrene nanoplastic particles (PS-NPs) were injected into columns packed with iron oxyhydroxide-coated sand. In addition, factors such as the content of iron oxyhydroxide-coated sand (λ), pH, ionic strength (IS), and cation valence were systematically studied. DLVO theory was used to evaluate the interactions between PS-NP and the porous media. By comparing the breakthrough curves (BTCs) of PS-NPs, it was clear that all these variables exerted a significant influence on the mobility of PS-NPs in the columns. These effects could be explained by the following: Firstly, by applying the DLVO theory, it was possible to model the electrostatic interaction between quartz sand and PS-NPs. For instance, at different IS (NaCl), the maximum energy barrier (<em>Φ</em><sub>max</sub>) decreased with an increase in IS, which meant PS-NPs could more easily overcome the energy barrier to deposited on the sand surface at higher IS. Secondly, the positively charged iron oxyhydroxide coating provided additional favorable deposition sites for negatively charged PS-NPs. However, when the pH of the solution exceeded the iron oxyhydroxide pH<sub>pzc</sub> (~pH 9), the iron coating became negative and increased the mobility of PS-NPs. Finally, bridging agents, such as Ca<sup>2+</sup> and Ba<sup>2+</sup>, resulted in the significant deposition of PS-NPs on the sand due to the bridging effect connecting the porous media and PS-NPs through the O-containing functional groups on both plastic and mineral surfaces. This study provides a better understanding of how the charge heterogeneity on aquifer materials and groundwater hydrochemistry affect the transport of PS-NPs in aquifers.</p>


PAMM ◽  
2007 ◽  
Vol 7 (1) ◽  
pp. 4020003-4020004
Author(s):  
Nils Karajan ◽  
Wolfgang Ehlers

2021 ◽  
pp. 1-37
Author(s):  
Yuta Tsubokura ◽  
Kyohei Noguchi ◽  
Tomomi Yagi

Abstract Airborne salt accelerates the corrosion of steel materials and, thus, must be quantitatively evaluated for the management of steel structures. In Japan, the dry gauze method, which uses a gauze embedded in a wooden frame, is often used to evaluate the amount of airborne salt. However, its collection efficiency for salt particles has not been verified owing to the complex airflows around the device. Therefore, as a first step to clarify the collection efficiency, the authors simulated the flow field around the collection device using computational fluid dynamics. In this study, the gauze was modeled as a porous medium to reduce the computational costs. Wind tunnel tests were performed to obtain the pressure loss coefficients of the gauze, which is necessary for the porous media method. Subsequently, particle tracking was performed in the calculated flow field, and the collection efficiency was evaluated under the condition of a filtration efficiency of 100%. The flow fields around the device were accurately reproduced using the porous media model, which considered both the tangential and normal resistances of the gauze. This result suggests that the tangential resistance must be considered in the porous media model when the porosity of an object is small, even if the thickness is small. The dependence of collection efficiency on wind speed and direction was quantitatively evaluated. The results showed that the collection efficiency was greatly affected by the complicated flow field around the device due to the combination of the gauze and wooden frame.


Author(s):  
Gwendoline ARNAUD ◽  
Vincent REY ◽  
Damien SOUS ◽  
Julien TOUBOUL ◽  
Fabrice GOUAUD

Sign in / Sign up

Export Citation Format

Share Document