Simulation of Drop-Size Distribution During Dropwise and Jumping Drop Condensation on a Vertical Surface: Implications for Heat Transfer Modeling

Langmuir ◽  
2019 ◽  
Vol 35 (39) ◽  
pp. 12858-12875 ◽  
Author(s):  
Kimberly A. Stevens ◽  
Julie Crockett ◽  
Daniel Maynes ◽  
Brian D. Iverson
Author(s):  
Sunwoo Kim ◽  
Kwang J. Kim ◽  
John M. Kennedy ◽  
Jiong Liu ◽  
Ganesh Skandan

The effect of the drop-contact angle on dropwise condensation heat transfer of saturated steam on a single horizontal copper tube with the superhydrophobic coating was investigated theoretically. The theoretical model is established by combining heat transfer through a single droplet with a well-known drop size distribution theory. The analysis of single droplet heat transfer incorporates resistances due to vapor-liquid interface, drop curvature, conduction through the drop, and conduction through the superhydrophobic coating layer. Each resistance is expressed as a function of the contact angle. The total resistance for a drop with a fixed radius increases as the contact angle increases. A population balance model is used to develop a drop distribution function for the small drops that grow by direct condensation. Drop size distribution for large drops that grow mainly by coalescence is obtained from the empirical equation proposed by Le Fevre and Rose (1966). The results indicate that the contact angle has a strong correlation with the maximum drop radius, which plays a pivotal role in determining drop size distribution. A high contact angle leads to a significant reduction in the radius of the largest drop that is about to fall down due to gravity and sweep away drops in its path. Thus, there are more areas on the condensing surface for small drops, allowing for greater heat transfer. Also, it is shown that surface wettability affects the performance of dropwise condensation heat transfer and our theoretical model successfully predicts this phenomenon.


2011 ◽  
Vol 133 (8) ◽  
Author(s):  
Sunwoo Kim ◽  
Kwang J. Kim

A mathematical model is developed to represent and predict the dropwise condensation phenomenon on nonwetting surfaces having hydrophobic or superhydrophobic (contact angle greater than 150 deg) features. The model is established by synthesizing the heat transfer through a single droplet with the drop size distribution. The single droplet heat transfer is analyzed as a combination of the vapor-liquid interfacial resistance, the resistance due to the conduction through the drop itself, the resistance from the coating layer, and the resistance due to the curvature of the drop. A population balance model is adapted to develop a drop distribution function for the small drops that grow by direct condensation. Drop size distribution for large drops that grow mainly by coalescence is obtained from a well-known empirical equation. The evidence obtained suggests that both the single droplet heat transfer and drop distribution are significantly affected by the contact angle. More specifically, the model results indicate that a high drop-contact angle leads to enhancing condensation heat transfer. Intense hydrophobicity, which produces high contact angles, causes a reduction in the size of drops on the verge of falling due to gravity, thus allowing space for more small drops. The simulation results are compared with experimental data, which were previously reported.


1982 ◽  
Vol 6 (5) ◽  
pp. 323-327 ◽  
Author(s):  
N. K. Rizk ◽  
A. H. Lefebvre

Sign in / Sign up

Export Citation Format

Share Document