scholarly journals Interfacial Adsorption of a Monoclonal Antibody and Its Fab and Fc Fragments at the Oil/Water Interface

Langmuir ◽  
2019 ◽  
Vol 35 (42) ◽  
pp. 13543-13552
Author(s):  
Sean Ruane ◽  
Zongyi Li ◽  
Mario Campana ◽  
Xuzhi Hu ◽  
Haoning Gong ◽  
...  
2021 ◽  
Vol 116 ◽  
pp. 106638
Author(s):  
Danni Qu ◽  
Shengnan Wang ◽  
Hekai Zhao ◽  
He Liu ◽  
Danshi Zhu ◽  
...  

2015 ◽  
Vol 104 (4) ◽  
pp. 1282-1290 ◽  
Author(s):  
Shyam B. Mehta ◽  
Rachael Lewus ◽  
Jared S. Bee ◽  
Theodore W. Randolph ◽  
John F. Carpenter

2015 ◽  
Vol 11 ◽  
pp. 2355-2364 ◽  
Author(s):  
Shintaro Kawano ◽  
Toshiyuki Kida ◽  
Mitsuru Akashi ◽  
Hirofumi Sato ◽  
Motohiro Shizuma ◽  
...  

Background: Emulsions stabilized by colloidal particles are known as Pickering emulsions. To date, soft microgel particles as well as inorganic and organic particles have been utilized as Pickering emulsifiers. Although cyclodextrin (CD) works as an attractive emulsion stabilizer through the formation of a CD–oil complex at the oil–water interface, a high concentration of CD is normally required. Our research focuses on an effective Pickering emulsifier based on a soft colloidal CD polymer (CD nanogel) with a unique surface-active property. Results: CD nanogels were prepared by crosslinking heptakis(2,6-di-O-methyl)-β-cyclodextrin with phenyl diisocyanate and subsequent immersion of the resulting polymer in water. A dynamic light scattering study shows that primary CD nanogels with 30–50 nm diameter assemble into larger CD nanogels with 120 nm diameter by an increase in the concentration of CD nanogel from 0.01 to 0.1 wt %. The CD nanogel has a surface-active property at the air–water interface, which reduces the surface tension of water. The CD nanogel works as an effective Pickering emulsion stabilizer even at a low concentration (0.1 wt %), forming stable oil-in-water emulsions through interfacial adsorption by the CD nanogels. Conclusion: Soft CD nanogel particles adsorb at the oil–water interface with an effective coverage by forming a strong interconnected network and form a stable Pickering emulsion. The adsorption property of CD nanogels on the droplet surface has great potential to become new microcapsule building blocks with porous surfaces. These microcapsules may act as stimuli-responsive nanocarriers and nanocontainers.


2017 ◽  
Vol 10 (1) ◽  
pp. 1306-1316 ◽  
Author(s):  
Fang Pan ◽  
Zongyi Li ◽  
Thomas Leyshon ◽  
Dominic Rouse ◽  
Ruiheng Li ◽  
...  

2020 ◽  
Author(s):  
Bingqing qian ◽  
Haiqiao Wang ◽  
Dong Wang ◽  
Hao-Bin Zhang ◽  
Jessica Wu ◽  
...  

1991 ◽  
Vol 56 (1) ◽  
pp. 112-129 ◽  
Author(s):  
Takashi Kakiuchi ◽  
Mitsugi Senda

We have estimated the degree of polarizability of a polarized oil-water interface used as a working interface and that of the nonpolarizability of a nonpolarized interface used as a reference oil-water interface from the numerical calculation of dc and ac current vs potential behavior at both interfaces. Theoretical equations of dc and ac currents for simultaneous cation and anion transfer of supporting electrolytes have been derived for the planar stationary interface for reversible and quasi-reversible cases. In the derivation, the migration effect and the coupling of the cation and anion transfer have been incorporated. The transfer of ions constituting a supporting electrolyte contributes to the total admittance of the interface even in the region where the interface may be considered as polarized in dc sense, as pointed out first by Samec et al. (J. Electroanal. Chem. 126, 121 (1981)). Moreover, the reference oil-water interface is not ideally reversible, so that the contribution from this interface to the measured admittance cannot be negligible, unless the area of the reference oil-water interface is much larger than that of the working oil-water interface. The effect of non-ideality of the reference oil-water interface on the determination of double layer capacitances and kinetic parameters of charge transfer at the working oil-water interface has been estimated.


Sign in / Sign up

Export Citation Format

Share Document