Investigation of the Temperature Dependence of Activation Volume in Glass-Forming Polymer Melts under Variable Pressure Conditions

2020 ◽  
Vol 53 (16) ◽  
pp. 6828-6841 ◽  
Author(s):  
Wen-Sheng Xu ◽  
Jack F. Douglas ◽  
Wenjie Xia ◽  
Xiaolei Xu
2020 ◽  
Vol 53 (17) ◽  
pp. 7239-7252 ◽  
Author(s):  
Wen-Sheng Xu ◽  
Jack F. Douglas ◽  
Wenjie Xia ◽  
Xiaolei Xu

2020 ◽  
Author(s):  
Theodosios Famprikis ◽  
O. Ulas Kudu ◽  
James Dawson ◽  
Pieremanuele Canepa ◽  
François Fauth ◽  
...  

<div> <p>Fast-ion conductors are critical to the development of solid-state batteries. The effects of mechanochemical synthesis that lead to increased ionic conductivity in an archetypical sodium-ion conductor Na<sub>3</sub>PS<sub>4</sub> are not fully understood. We present here a comprehensive analysis based on diffraction (Bragg, pair distribution function), spectroscopy (impedance, Raman, NMR, INS) and <i>ab-initio</i> simulations aimed at elucidating the synthesis-property relationships in Na<sub>3</sub>PS<sub>4</sub>. We consolidate previously reported interpretations about the local structure of ball-milled samples, underlining the sodium disorder and showing that a local tetragonal framework more accurately describes the structure than the originally proposed cubic one. Through variable-pressure impedance spectroscopy measurements, we report for the first time the activation volume for Na<sup>+</sup> migration in Na<sub>3</sub>PS<sub>4</sub>, which is ~30% higher for the ball-milled samples. Moreover, we show that the effect of ball-milling on increasing the ionic conductivity of Na<sub>3</sub>PS<sub>4</sub> to ~10<sup>-4</sup> S/cm can be reproduced by applying external pressure on a sample from conventional high temperature ceramic synthesis. We conclude that the key effects of mechanochemical synthesis on the properties of solid electrolytes can be analyzed and understood in terms of pressure, strain and activation volume.</p> </div>


1976 ◽  
Vol 31 (7) ◽  
pp. 728-730
Author(s):  
A. S. Rrausz

Abstract The stress and temperature dependence of the activation volume is often explained by a similar dependence of the measured stress sensitivity. This explanation cannot be reconciled with the nonconservative motion of jogs, with dislocation climb, nor with the intersection mechanism. It is in contradiction with the results obtained in direct dislocation velocity measurements as well. It is now shown that when the backward movement of the dislocations is taken into consideration an explanation, consistent with the rate theory and with the dislocation mobility observations, can be developed. The analysis shows that with constant activation volume the stress sensitivity is stress and temperature dependent, in agreement with the corresponding measurements and mechanisms.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Aleksandra Drozd-Rzoska

Abstract In pressurized glass-forming systems, the apparent (changeable) activation volume Va(P) is the key property governing the previtreous behavior of the structural relaxation time (τ) or viscosity (η), following the Super-Barus behavior: $${\boldsymbol{\tau }}{\boldsymbol{(}}{\boldsymbol{P}}{\boldsymbol{)}}{\boldsymbol{,}}{\boldsymbol{\eta }}{\boldsymbol{(}}{\boldsymbol{P}}{\boldsymbol{)}}{\boldsymbol{\propto }}{\bf{\exp }}{\boldsymbol{(}}{{\boldsymbol{V}}}_{{\boldsymbol{a}}}{\boldsymbol{(}}{\boldsymbol{P}}{\boldsymbol{)}}{\boldsymbol{/}}{\boldsymbol{R}}{\boldsymbol{T}}{\boldsymbol{)}}$$ τ ( P ) , η ( P ) ∝ exp ( V a ( P ) / R T ) , T = const. It is usually assumed that Va(P) = V#(P), where $${{\boldsymbol{V}}}^{{\boldsymbol{\#}}}{\boldsymbol{(}}{\boldsymbol{P}}{\boldsymbol{)}}={\boldsymbol{R}}{\boldsymbol{T}}{\boldsymbol{d}}\,{\boldsymbol{ln}}\,{\boldsymbol{\tau }}{\boldsymbol{(}}{\boldsymbol{P}}{\boldsymbol{)}}{\boldsymbol{/}}{\boldsymbol{d}}{\boldsymbol{P}}$$ V # ( P ) = R T d ln τ ( P ) / d P or $${{\boldsymbol{V}}}^{{\boldsymbol{\#}}}{\boldsymbol{(}}{\boldsymbol{P}}{\boldsymbol{)}}{\boldsymbol{=}}{\boldsymbol{R}}{\boldsymbol{T}}{\boldsymbol{d}}\,{\boldsymbol{ln}}\,{\boldsymbol{\eta }}{\boldsymbol{(}}{\boldsymbol{P}}{\boldsymbol{)}}{\boldsymbol{/}}{\boldsymbol{d}}{\boldsymbol{P}}$$ V # ( P ) = R T d ln η ( P ) / d P . This report shows that Va(P) ≪ V#(P) for P → Pg, where Pg denotes the glass pressure, and the magnitude V#(P) is coupled to the pressure steepness index (the apparent fragility). V#(P) and Va(P) coincides only for the basic Barus dynamics, where Va(P) = Va = const in the given pressure domain, or for P → 0. The simple and non-biased way of determining Va(P) and the relation for its parameterization are proposed. The derived relation resembles Murnaghan - O’Connel equation, applied in deep Earth studies. It also offers a possibility of estimating the pressure and volume at the absolute stability limit. The application of the methodology is shown for diisobutyl phthalate (DIIP, low-molecular-weight liquid), isooctyloxycyanobiphenyl (8*OCB, liquid crystal) and bisphenol A/epichlorohydrin (EPON 828, epoxy resin), respectively.


1988 ◽  
Vol 28 (8) ◽  
pp. 529-533 ◽  
Author(s):  
P. A. Tanguy ◽  
L. Choplin ◽  
P. Hurez

Sign in / Sign up

Export Citation Format

Share Document