structural relaxation time
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 10)

H-INDEX

13
(FIVE YEARS 2)

Author(s):  
Hongyu Gao

When liquids are confined into nanometer-scale slit, the induced layering-like film structure allows the liquid to sustain non-isotropic stresses and thus being load-bearing. Such anisotropic characteristics of liquid under confinement arise naturally from the liquids’ wave number dependent compressibility that does not need solidification to take place as a prerequisite. In other words, liquids under confinement can still remain fluidity with molecules being (sub-)diffusive. However, the extensively prolonged structural relaxation time can cause hysteresis of stress relaxation of confined molecules in response to the motions of confining walls and thereby yield the quasi-static stress tensor history-dependent. In this work, by means of molecule dynamics, the discrepancy of stress tensor of a highly confined key base-oil component, i.e. 1-decene trimer, is captured after its relaxation from being compressed and decompressed. The results indicate that among the effects (e.g. confinement, molecular structure, and film density) that can potentially affect confined stress tensor, the ordering status of the confined molecules plays a predominant role.


2021 ◽  
Vol 54 (1) ◽  
Author(s):  
Fang Li ◽  
Junbo Xin ◽  
Qin Shi

Understanding how liquid dynamics govern crystallization is critical for maintaining the physical stability of amorphous pharmaceutical formulations. In the present study, griseofulvin (GSF), a classic antifungal drug, was used as the model system to investigate the correlations between crystal growth kinetics and liquid dynamics. The temperature dependence of the kinetic part of the bulk crystal growth in a supercooled liquid of GSF was weaker than that of the structural relaxation time τα and scaled as τα −0.69. In the glassy state, GSF exhibited the glass-to-crystal (GC) growth behavior, whose growth rate was too fast to be under the control of the α-relaxation process. Moreover, from the perspective of τα, the GC growth of GSF also satisfied the general condition for GC growth to exist: D/u < 7 pm, where D is the diffusion coefficient and u the speed of crystal growth. Also compared were the fast surface crystal growth rates u s and surface relaxation times τsurface predicted by the random first-order transition theory. Here, the surface crystal growth rate u s of GSF exhibited a power-law dependence upon the surface structural relaxation time: u s ∝ τsurface −0.71, which was similar to that of the bulk growth rate and τα. These findings are important for understanding and predicting the crystallization of amorphous pharmaceutical solids both in the bulk and at the surface.


2020 ◽  
Vol 31 (1) ◽  
Author(s):  
Tran Dinh Cuong ◽  
Anh D. Phan

Indomethacin is a common nonsteroidal anti-inflammatory drug, but its glass transition behaviors remain ambiguous. Here we present a simple theoretical approach to investigate the molecular mobility of amorphous indomethacin under compression. In our model, the relaxation of a particle is governed by its nearest-neighbor interactions and long-range cooperative effects of fluid surroundings. On that basis, the temperature and pressure dependence of the structural relaxation time is deduced from the thermal expansion process. Additionally, we also consider correlations between the activated dynamics and the shear response in the deeply supercooled state. Our numerical calculations agree quantitatively well with previous experimental works.


2020 ◽  
Vol 538 ◽  
pp. 120024 ◽  
Author(s):  
Tran Dinh Cuong ◽  
Anh D. Phan ◽  
Katsunori Wakabayashi ◽  
Pham Thanh Huy

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Aleksandra Drozd-Rzoska

Abstract In pressurized glass-forming systems, the apparent (changeable) activation volume Va(P) is the key property governing the previtreous behavior of the structural relaxation time (τ) or viscosity (η), following the Super-Barus behavior: $${\boldsymbol{\tau }}{\boldsymbol{(}}{\boldsymbol{P}}{\boldsymbol{)}}{\boldsymbol{,}}{\boldsymbol{\eta }}{\boldsymbol{(}}{\boldsymbol{P}}{\boldsymbol{)}}{\boldsymbol{\propto }}{\bf{\exp }}{\boldsymbol{(}}{{\boldsymbol{V}}}_{{\boldsymbol{a}}}{\boldsymbol{(}}{\boldsymbol{P}}{\boldsymbol{)}}{\boldsymbol{/}}{\boldsymbol{R}}{\boldsymbol{T}}{\boldsymbol{)}}$$ τ ( P ) , η ( P ) ∝ exp ( V a ( P ) / R T ) , T = const. It is usually assumed that Va(P) = V#(P), where $${{\boldsymbol{V}}}^{{\boldsymbol{\#}}}{\boldsymbol{(}}{\boldsymbol{P}}{\boldsymbol{)}}={\boldsymbol{R}}{\boldsymbol{T}}{\boldsymbol{d}}\,{\boldsymbol{ln}}\,{\boldsymbol{\tau }}{\boldsymbol{(}}{\boldsymbol{P}}{\boldsymbol{)}}{\boldsymbol{/}}{\boldsymbol{d}}{\boldsymbol{P}}$$ V # ( P ) = R T d ln τ ( P ) / d P or $${{\boldsymbol{V}}}^{{\boldsymbol{\#}}}{\boldsymbol{(}}{\boldsymbol{P}}{\boldsymbol{)}}{\boldsymbol{=}}{\boldsymbol{R}}{\boldsymbol{T}}{\boldsymbol{d}}\,{\boldsymbol{ln}}\,{\boldsymbol{\eta }}{\boldsymbol{(}}{\boldsymbol{P}}{\boldsymbol{)}}{\boldsymbol{/}}{\boldsymbol{d}}{\boldsymbol{P}}$$ V # ( P ) = R T d ln η ( P ) / d P . This report shows that Va(P) ≪ V#(P) for P → Pg, where Pg denotes the glass pressure, and the magnitude V#(P) is coupled to the pressure steepness index (the apparent fragility). V#(P) and Va(P) coincides only for the basic Barus dynamics, where Va(P) = Va = const in the given pressure domain, or for P → 0. The simple and non-biased way of determining Va(P) and the relation for its parameterization are proposed. The derived relation resembles Murnaghan - O’Connel equation, applied in deep Earth studies. It also offers a possibility of estimating the pressure and volume at the absolute stability limit. The application of the methodology is shown for diisobutyl phthalate (DIIP, low-molecular-weight liquid), isooctyloxycyanobiphenyl (8*OCB, liquid crystal) and bisphenol A/epichlorohydrin (EPON 828, epoxy resin), respectively.


2019 ◽  
Vol 16 (7) ◽  
pp. 2992-2998 ◽  
Author(s):  
Anh D. Phan ◽  
Justyna Knapik-Kowalczuk ◽  
Marian Paluch ◽  
Trinh X. Hoang ◽  
Katsunori Wakabayashi

Sign in / Sign up

Export Citation Format

Share Document