Ligand-Enabled C–H Olefination and Lactonization of Benzoic Acids and Phenylacetic Acids via Palladium Catalyst

2022 ◽  
Author(s):  
Yangyang Wang ◽  
Xiaobo Xu ◽  
Gaorong Wu ◽  
Binghan Pang ◽  
Shaowen Liao ◽  
...  
2015 ◽  
Vol 17 (14) ◽  
pp. 3418-3421 ◽  
Author(s):  
Changlei Zhu ◽  
Yuanfei Zhang ◽  
Jian Kan ◽  
Huaiqing Zhao ◽  
Weiping Su

1992 ◽  
Vol 57 (2) ◽  
pp. 393-396 ◽  
Author(s):  
Martin Kotora ◽  
Milan Hájek

The 2 : 1 adduct as the final product of the addition of tetrachloromethane to 1,5-hexadiene catalyzed by copper(I)-butylamine complex was obtained in high yield (96%) under mild reaction conditions. Predominant 1 : 1 adduct formation was observed in the presence of a palladium catalyst or dibenzoyl peroxide initiator.


1992 ◽  
Vol 57 (1) ◽  
pp. 194-203 ◽  
Author(s):  
Karel Šindelář ◽  
Vojtěch Kmoníček ◽  
Marta Hrubantová ◽  
Zdeněk Polívka

(Arylthio)benzoic acids IIa - IIe and VIb - VId were transformed via the acid chlorides to the N,N-dimethylamides which were reduced either with diborane "in situ" or with lithium aluminium hydride to N,N-dimethyl-(arylthio)benzylamines Ia - Ie and Vb - Vd. Leuckart reaction of the aldehydes IX and X with dimethylformamide and formic acid afforded directly the amines Va and Ve. Demethylation of the methoxy compounds Ia and Ve with hydrobromic acid resulted in the phenolic amines If and Vf. The most interesting N,N-dimethyl-4-(phenylthio)benzylamine (Va) hydrochloride showed affinity to cholinergic and 5-HT2 serotonin receptors in the rat brain and some properties considered indicative of antidepressant activity (inhibition of serotonin re-uptake in the brain and potentiation of yohimbine toxicity in mice).


1994 ◽  
Vol 59 (9) ◽  
pp. 2029-2041
Author(s):  
Oldřich Pytela ◽  
Taťjana Nevěčná

The kinetics of decomposition of 1,3-bis(4-methylphenyl)triazene catalyzed with 13 substituted benzoic acids of various concentrations have been measured in 25 vol.% aqueous methanol at 25.0 °C. The rate constants observed (297 data) have be used as values of independent variable in a series of models of the catalyzed decomposition. For the catalytic particles were considered the undissociated acid, its conjugated base, and the proton in both the specific and general catalyses. Some models presumed formation of reactive or nonreactive complexes of the individual reactants. The substituent effect is described by the Hammett equation. The statistically best model in which the observed rate constant is a superposition of a term describing the dependence on proton concentration and a term describing the dependence on the product of concentrations of proton and conjugated base is valid with the presumption of complete proton transfer from the catalyst acid to substrate, which has been proved. The behaviour of 4-dimethylamino, 4-amino, and 3-amino derivatives is anomalous (lower catalytic activity as compared with benzoic acid). This supports the presumed participation of conjugated base in the title process.


1998 ◽  
Vol 63 (11) ◽  
pp. 1945-1953 ◽  
Author(s):  
Jiří Hanika ◽  
Karel Sporka ◽  
Petr Macoun ◽  
Vladimír Kysilka

The activity of ruthenium, palladium, and nickel catalysts for the hydrogenation of 1,2-dihydroacenaphthylene in cyclohexane solution was studied at temperatures up to 180 °C and pressures up to 8 MPa. The GC-MS technique was used to identify most of the perhydroacenaphthylene stereoisomers, whose fractions in the product were found dependent on the nature of the active component of the catalyst. The hydrogenation was fastest on the palladium catalyst (3% Pd/C). The nickel catalyst Ni-NiO/Al2O3, which is sufficiently active also after repeated use, can be recommended for practical application. The activation energy of 1,2-dihydroacenaphthylene hydrogenation using this catalyst is 17 kJ/mol, the reaction order with respect to hydrogen is unity.


2009 ◽  
Vol 74 (1) ◽  
pp. 29-42 ◽  
Author(s):  
Vilve Nummert ◽  
Mare Piirsalu ◽  
Signe Vahur ◽  
Oksana Travnikova ◽  
Ilmar A. Koppel

The second-order rate constants k (in dm3 mol–1 s–1) for alkaline hydrolysis of phenyl esters of meta-, para- and ortho-substituted benzoic acids, X-C6H4CO2C6H5, have been measured spectrophotometrically in aqueous 0.5 and 2.25 M Bu4NBr at 25 °C. The substituent effects for para and meta derivatives were described using the Hammett relationship. For the ortho derivatives the Charton equation was used. For ortho-substituted esters two steric scales were involved: the EsB and the Charton steric (υ) constants. When going from pure water to aqueous 0.5 and 2.25 M Bu4NBr, the meta and para polar effects, the ortho inductive and resonance effects in alkaline hydrolysis of phenyl esters of substituted benzoic acids, became stronger nearly to the same extent as found for alkaline hydrolysis of C6H5CO2C6H4-X. The steric term of ortho-substituted esters was almost independent of the media considered. The rate constants of alkaline hydrolysis of ortho-, meta- and para-substituted phenyl benzoates (X-C6H4CO2C6H5, C6H5CO2C6H4-X) and alkyl benzoates, C6H5CO2R, in water, 0.5 and 2.25 M Bu4NBr were correlated with the corresponding IR stretching frequencies of carbonyl group, (ΔνCO)X.


ACS Catalysis ◽  
2021 ◽  
pp. 6626-6632
Author(s):  
Zhongyi Zeng ◽  
Jonas F. Goebel ◽  
Xianming Liu ◽  
Lukas J. Gooßen
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document