Enhancement of Energy Conversion Efficiency via Interfacial Carrier Diffusion in Microscale Segmented Thermoelectric Materials

Author(s):  
Zhihe Jin ◽  
Jiashi Yang
2014 ◽  
Vol 16 (37) ◽  
pp. 20120-20126 ◽  
Author(s):  
Yaniv Gelbstein ◽  
Joseph Davidow

Methods for enhancement of the direct thermal to electrical energy conversion efficiency, upon development of advanced thermoelectric materials, are constantly investigated mainly for an efficient implementation of thermoelectric devices in automotive vehicles, for utilizing the waste heat generated in such engines into useful electrical power and thereby reduction of the fuel consumption and CO2 emission levels.


2016 ◽  
Vol 46 (1) ◽  
pp. 6-13 ◽  
Author(s):  
Hannah Armstrong ◽  
Matthew Boese ◽  
Cody Carmichael ◽  
Hannah Dimich ◽  
Dylan Seay ◽  
...  

2000 ◽  
Vol 122 (4) ◽  
pp. 721-729 ◽  
Author(s):  
C.-W. Park ◽  
M. Kaviany

In direct combustion-thermoelectric energy conversion, direct fuel injection and reciprocation of the air flowing in a solid matrix are combined with the solid-gas interfacial heat transfer and the solid conduction to allow for obtaining superadiabatic temperatures at the hot junctions. While the solid conductivity is necessary, the relatively large thermal conductivity of the available high-temperature thermoelectric materials (e.g., Si–Ge alloys) results in a large conduction loss from the hot junctions and deteriorates the performance. Here, a combustion-thermoelectric tube is introduced and analyzed. Radially averaged temperatures are used for the fluid and solid phases. A combination of external cooling of the cold junctions, and direct injection of the fuel, has been used to increase the energy conversion efficiency for low thermal conductivity, high-melting temperature thermoelectric materials. The parametric study (geometry, flow, stoichiometry, materials) shows that with the current high figure of merit, high temperature Si0.7Ge0.3 properties, a conversion efficiency of about 11 percent is achievable. With lower thermal conductivities for these high-temperature materials, efficiencies about 25 percent appear possible. This places this energy conversion in line with the other high efficiency, direct, electric power generation methods. [S0022-1481(00)01304-9]


2021 ◽  
Author(s):  
Xianhao Zhao ◽  
Tianyu Tang ◽  
Quan Xie ◽  
like gao ◽  
Limin Lu ◽  
...  

The cesium lead halide perovskites are regarded as effective candidates for light-absorbing materials in solar cells, which have shown excellent performances in experiments such as promising energy conversion efficiency. In...


Sign in / Sign up

Export Citation Format

Share Document