PVDF-Based Dielectric Composite Films with Excellent Energy Storage Performances by Design of Nanofibers Composition Gradient Structure

2018 ◽  
Vol 1 (11) ◽  
pp. 6320-6329 ◽  
Author(s):  
Yue Zhang ◽  
Qingguo Chi ◽  
Lizhu Liu ◽  
Tiandong Zhang ◽  
Changhai Zhang ◽  
...  
Author(s):  
Peng Wang ◽  
Zhongbin Pan ◽  
Weilin Wang ◽  
Jianxu Hu ◽  
Jinjun Liu ◽  
...  

High-performance electrostatic capacitors are in urgent demand owing to the rapidly development of advanced power electronic applications. However, polymer-based composite films with both high breakdown strength (Eb) and dielectric constant...


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 285
Author(s):  
Lingfei Li ◽  
Qiu Sun ◽  
Xiangqun Chen ◽  
Zhaohua Jiang ◽  
Yongjun Xu

The low dielectric constant of the nonpolar polymer poly(1-butene) (PB-1) limits its application as a diaphragm element in energy storage capacitors. In this work, Ba(Zr0.2Ti0.8)O3-coated multiwalled carbon nanotubes (BZT@MWCNTs) were first prepared by using the sol–gel hydrothermal method and then modified with polydopamine (PDA) via noncovalent polymerization. Finally, PB-1 matrix composite films filled with PDA-modified BZT@MWCNTs nanoparticles were fabricated through a solution-casting method. Results indicated that the PDA-modified BZT@MWCNTs had good dispersion and binding force in the PB-1 matrix. These characteristics improved the dielectric and energy storage performances of the films. Specifically, the PDA-modified 10 vol% BZT@ 0.5 vol% MWCNTs/PB-1 composite film exhibited the best dielectric performance. At 1 kHz, the dielectric constant of this film was 25.43, which was 12.7 times that of pure PB-1 films. Moreover, its dielectric loss was 0.0077. Furthermore, under the weak electric field of 210 MV·m−1, the highest energy density of the PDA-modified 10 vol% BZT@ 0.5 vol% MWCNTs/PB-1 composite film was 4.57 J·cm−3, which was over 3.5 times that of PB-1 film (≈1.3 J·cm−3 at 388 MV·m−1).


2021 ◽  
Vol 79 (10) ◽  
pp. 1273
Author(s):  
Qi-kun Feng ◽  
Dong-li Zhang ◽  
Chang Liu ◽  
Yong-xin Zhang ◽  
Zhi-min Dang

2015 ◽  
Vol 41 (10) ◽  
pp. 13582-13588 ◽  
Author(s):  
M. Wang ◽  
W.L. Li ◽  
Y. Feng ◽  
Y.F. Hou ◽  
T.D. Zhang ◽  
...  

RSC Advances ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 7065-7072
Author(s):  
Jianxin Zhang ◽  
Jiachen Ma ◽  
Luqing Zhang ◽  
Chuanyong Zong ◽  
Anhou Xu ◽  
...  

Preparation of high-performance dielectric composite films using PDFMA@BT hybrid nanoparticles as fillers.


Sign in / Sign up

Export Citation Format

Share Document