scholarly journals Surface Bubble Growth in Plasmonic Nanoparticle Suspension

2020 ◽  
Vol 12 (23) ◽  
pp. 26680-26687
Author(s):  
Qiushi Zhang ◽  
Robert Douglas Neal ◽  
Dezhao Huang ◽  
Svetlana Neretina ◽  
Eungkyu Lee ◽  
...  
Author(s):  
Zachary Edel ◽  
Abhijit Mukherjee

The trends of decrease in size and increase in power dissipation for micro-electronic systems present a significant challenge for thermal management of modern electronics. The preferable cooling solution could be micro heat exchangers based on forced flow boiling. Nanoparticle deposition can affect nucleate boiling heat transfer coefficient via alteration of surface thermal conductivity, roughness, capillary wicking, wettability, and nucleation site density. It can also affect heat transfer by changing bubble departure diameter, bubble departure frequency, and the evaporation of the micro and macrolayer beneath the growing bubbles. In this study, flow boiling was investigated for 0.001 vol% aluminum oxide nanofluids in a brass microchannel and compared to results for regular water. For the case of nanofluid flow boiling, high speed images were taken after boiling durations of 25, 75, 125, and 150 min. Bubble growth rates were measured and compared for each case. Flow regime oscillation was observed and regime duration was split into two periods: single-phase liquid and two-phase. The change in regime timing revealed the effect of nanoparticle suspension and deposition on the Onset of Nucelate Boiling (ONB) and the Onset of Bubble Elongation (OBE). The addition of nanoparticles was shown to stabilize bubble growth as well as the transition of flow regimes between liquid, two-phase, and vapor.


MRS Advances ◽  
2020 ◽  
Vol 5 (62) ◽  
pp. 3315-3325
Author(s):  
Viktoriia Savchuk ◽  
Arthur R. Knize ◽  
Pavlo Pinchuk ◽  
Anatoliy O. Pinchuk

AbstractWe present a systematic numerical analysis of the quantum yield of an electric dipole coupled to a plasmonic nanoparticle. We observe that the yield is highly dependent on the distance between the electric dipole and the nanoparticle, the size and permittivity of the nanoparticle, and the wavelength of the incident radiation. Our results indicate that enhancement of the quantum yield is only possible for electric dipoles coupled to a nanoparticle with a radius of 20 nm or larger. As the size of the nanoparticle is increased, emission enhancement occurs at wavelengths dependent on the coupling distance.


Sign in / Sign up

Export Citation Format

Share Document