Size-dependent emission of a dipole coupled to a metal nanoparticle

MRS Advances ◽  
2020 ◽  
Vol 5 (62) ◽  
pp. 3315-3325
Author(s):  
Viktoriia Savchuk ◽  
Arthur R. Knize ◽  
Pavlo Pinchuk ◽  
Anatoliy O. Pinchuk

AbstractWe present a systematic numerical analysis of the quantum yield of an electric dipole coupled to a plasmonic nanoparticle. We observe that the yield is highly dependent on the distance between the electric dipole and the nanoparticle, the size and permittivity of the nanoparticle, and the wavelength of the incident radiation. Our results indicate that enhancement of the quantum yield is only possible for electric dipoles coupled to a nanoparticle with a radius of 20 nm or larger. As the size of the nanoparticle is increased, emission enhancement occurs at wavelengths dependent on the coupling distance.

2020 ◽  
Vol 4 (3) ◽  
pp. 941-949 ◽  
Author(s):  
Xinzhe Yang ◽  
Qian Wang ◽  
Peiyu Hu ◽  
Chao Xu ◽  
Wenjing Guo ◽  
...  

An ionic AIEgen with high fluorescence quantum yield shows remarkable and reversible mechanochromism as well as excellent mitochondrial imaging of cancer cells and long-term tracking of tumors.


Author(s):  
Karthik Lakshmanan ◽  
Martijn Cloos ◽  
Ryan Brown ◽  
Riccardo Lattanzi ◽  
Daniel K. Sodickson ◽  
...  

Purpose. To revisit the “loopole,” an unusual coil topology whose unbalanced current distribution captures both loop and electric dipole properties, which can be advantageous in ultra-high-field MRI. Methods. Loopole coils were built by deliberately breaking the capacitor symmetry of traditional loop coils. The corresponding current distribution, transmit efficiency, and signal-to-noise ratio (SNR) were evaluated in simulation and experiments in comparison to those of loops and electric dipoles at 7 T (297 MHz). Results. The loopole coil exhibited a hybrid current pattern, comprising features of both loops and electric dipole current patterns. Depending on the orientation relative to B0, the loopole demonstrated significant performance boost in either the transmit efficiency or SNR at the center of a dielectric sample when compared to a traditional loop. Modest improvements were observed when compared to an electric dipole. Conclusion. The loopole can achieve high performance by supporting both divergence-free and curl-free current patterns, which are both significant contributors to the ultimate intrinsic performance at ultra-high field. While electric dipoles exhibit similar hybrid properties, loopoles maintain the engineering advantages of loops, such as geometric decoupling and reduced resonance frequency dependence on sample loading.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Xiangtian Xiao ◽  
Kai Wang ◽  
Taikang Ye ◽  
Rui Cai ◽  
Zhenwei Ren ◽  
...  

Abstract Enhanced hole injection is essential to achieve high performance in perovskite light-emitting diodes (LEDs). Here, a strategy is introduced to enhance hole injection by an electric dipole layer. Hopping theory demonstrates electric dipoles between hole injection layer and hole transport layer can enhance hole injection significantly. MoO3 is then chosen as the electric dipole layer between PEDOT:PSS (hole injection layer) and PVK (hole transport layer) to generate electric dipoles due to its deep conduction band level. Theoretical results demonstrate that strong electric fields are produced for efficient hole injection, and recombination rate is substantially increased. Capacitance-voltage analyses further prove efficient hole injection by introducing the electric dipole layer. Based on the proposed electric dipole layer structure, perovskite LEDs achieve a high current efficiency of 72.7 cd A−1, indicating that electric dipole layers are a feasible approach to enhance perovskite LEDs performance.


Author(s):  
Yoshinori Tokura ◽  
Noriaki Kida

Multiferroics with coexistent ferroelectric and magnetic orders can provide an interesting laboratory to test unprecedented magnetoelectric (ME) responses and their possible applications. One such example is the dynamical and/or resonant coupling between magnetic and electric dipoles in a solid. As examples of such dynamical ME effects, (i) the multiferroic domain wall dynamics and (ii) the electric dipole active magnetic responses are discussed with an overview of recent experimental observations.


Open Physics ◽  
2010 ◽  
Vol 8 (6) ◽  
Author(s):  
Knut Bakke ◽  
Lincoln Ribeiro ◽  
Claudio Furtado

AbstractIn this contribution we investigate the non-relativistic quantum dynamics of induced electric dipoles in the presence of a topological defect. We propose an analog of Landau quantization for neutral atoms, where a electric dipole is induced by the electromagnetic field configuration. We investigate this system in the presence of a topological defect and show that it breaks the infinite degeneracy of Landau levels.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Haruki Minami ◽  
Natsumi Itamoto ◽  
Wataru Watanabe ◽  
Ziying Li ◽  
Kazuki Nakamura ◽  
...  

Abstract DNA-based materials have attracted much attention due to their unique photo-functional properties and potential applications in various fields such as luminescent and biological systems, nanodevices, etc. In this study, the photophysical properties of a chiral Eu(III) complex, namely (Eu(D-facam)3), within DNA films were extensively investigated. The enhancement of photoluminescence (more than 25-folds increase of luminescence quantum yield) and degree of circularly polarization in luminescence (glum = − 0.6) was observed upon interaction with DNA. Various photophysical analyses suggested that the emission enhancement was mainly due to an increase of the sensitization efficiency (high ηsens) from the ligands to Eu(III) and suppression of the vibrational deactivation upon immobilization onto the DNA molecule. From CD and VCD measurements, it was suggested that the coordination structure of Eu(D-facam)3 was affected by the interaction with DNA, suggesting that the structural change of Eu(D-facam)3 contributed to the improvement of its luminescent properties.


2017 ◽  
Vol 19 (13) ◽  
pp. 8889-8895 ◽  
Author(s):  
Divya Singh ◽  
Srabanti Chaudhury

We present a theoretical method based on the first passage time distribution formalism to study the size-dependent catalytic activity of metal nanoparticle at the single molecule level.


2014 ◽  
Vol 36 (9) ◽  
pp. 1502-1505 ◽  
Author(s):  
J. Butkus ◽  
A.P. Edwards ◽  
F.P. Quacquarelli ◽  
A.M. Adawi

Geophysics ◽  
2017 ◽  
Vol 82 (4) ◽  
pp. E187-E195
Author(s):  
Michal Kolaj ◽  
Richard Smith

In inductive electromagnetics, the magnetic field measured in the air at any instant can be considered to be a potential field. As such, we can invert measured magnetic fields (at a fixed time or frequency) for the causative subsurface current system. These currents can be approximated with a 3D subsurface grid of 3D magnetic (closed-loop current) or electric (line current) dipoles whose location and orientation can be solved for using a potential-field-style smooth-model inversion. Because the problem is linear, both inversions can be solved quickly even for large subsurface volumes; and both can be run on a single data set for complementary information. Synthetic studies suggest that for discrete induction dominated targets, the magnetic and electric dipole inversions can be used to determine the center and top edge of the target, respectively. Furthermore, the orientation of plate targets can be estimated from visual examination of the orientations of the 3D vector dipoles and/or using the interpreted location of the center and top edge of the target. In the first field example, ground data from a deep massive sulfide body (mineral exploration target) was inverted and the results were consistent with the conclusions drawn from the synthetic examples and with the existing interpretation of the body (shallow dipping conductor at a depth of approximately 400 m). A second example over a near-surface mine tailing (a near-surface environmental/engineering study) highlighted the strength of being able to invert data using either magnetic or electric dipoles. Although both models were able to fit the data, the electric dipole model was considerably simpler and revealed a southwest−northeast-trending conductive zone. This fast approximate 3D inversion can be used as a starting point for more rigorous interpretation and/or, in some cases, as a stand-alone interpretation tool.


Sign in / Sign up

Export Citation Format

Share Document