Method to Reduce the Contact Resistivity between Galinstan and a Copper Electrode for Electrical Connection in Flexible Devices

Author(s):  
Takashi Sato ◽  
Kento Yamagishi ◽  
Michinao Hashimoto ◽  
Eiji Iwase
2020 ◽  
Author(s):  
Jennifer A. Rudd ◽  
Ewa Kazimierska ◽  
Louise B. Hamdy ◽  
Odin Bain ◽  
Sunyhik Ahn ◽  
...  

The utilization of carbon dioxide is a major incentive for the growing field of carbon capture. Carbon dioxide could be an abundant building block to generate higher value products. Herein, we describe the use of porous copper electrodes to catalyze the reduction of carbon dioxide into higher value products such as ethylene, ethanol and, notably, propanol. For <i>n</i>-propanol production, faradaic efficiencies reach 4.93% at -0.83 V <i>vs</i> RHE, with a geometric partial current density of -1.85 mA/cm<sup>2</sup>. We have documented the performance of the catalyst in both pristine and urea-modified foams pre- and post-electrolysis. Before electrolysis, the copper electrode consisted of a mixture of cuboctahedra and dendrites. After 35-minute electrolysis, the cuboctahedra and dendrites have undergone structural rearrangement. Changes in the interaction of urea with the catalyst surface have also been observed. These transformations were characterized <i>ex-situ</i> using scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. We found that alterations in the morphology, crystallinity, and surface composition of the catalyst led to the deactivation of the copper foams.


2020 ◽  
Vol 16 ◽  
Author(s):  
Muhammad Bilal Tahir ◽  
Aleena Shoukat ◽  
Tahir Iqbal ◽  
Asma Ayub ◽  
Saff-e Awal ◽  
...  

: The field of nanosensors has been gaining a lot of attention due to its properties such as mechanical and electrical ever since its first discovery by Dr. Wolter and first mechanical sensor in 1994. The rapidly growing demand of nanosensors has become profitable for a multidisciplinary approach in designing and fabrication of materials and strategies for potential applications. Frequent stimulating advancements are being suggested and established in recent years and thus heading towards multiple applications including food safety, healthcare, environmental monitoring, and biomedical research. Nanofabrication being an efficient method has been used in different industries like medical pharmaceutical for their complex functional geometry at a lower scale. These nanofabrications apply through different methods. There are five most commonly known methods which are frequently used, including top-down lithography, molecular self-assembly, bottom-up assembly, heat and pull method for fabrication of biosensors, etching for fabrication of nanosensors etc. Nanofabrication help at the nanoscale to design and work with small models. But these models due to their small size and being sensitive need more care for use as well as more training and experience to do work with. All methods used for nanofabrication are good and helpful. But more preferred is molecular self-assembly as it is helpful in mass production. Nanofabrication has become an emerging and developing field and it assumed that in near future our world is known by the new devices of nanofabrication.


1984 ◽  
Vol 20 (22) ◽  
pp. 944 ◽  
Author(s):  
S.S. Gill ◽  
J.R. Dawsey ◽  
A.G. Cullis
Keyword(s):  

2021 ◽  
Vol 13 (6) ◽  
pp. 7317-7323
Author(s):  
Zhenyi Wang ◽  
Chenguang Fu ◽  
Kaiyang Xia ◽  
Feng Liu ◽  
Xinbing Zhao ◽  
...  

Chemistry ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 687-703
Author(s):  
Jennifer A. Rudd ◽  
Sandra Hernandez-Aldave ◽  
Ewa Kazimierska ◽  
Louise B. Hamdy ◽  
Odin J. E. Bain ◽  
...  

The utilization of carbon dioxide is a major incentive for the growing field of carbon capture. Carbon dioxide could be an abundant building block to generate higher-value chemical products. Herein, we fabricated a porous copper electrode capable of catalyzing the reduction of carbon dioxide into higher-value products, such as ethylene, ethanol and propanol. We investigated the formation of the foams under different conditions, not only analyzing their morphological and crystal structure, but also documenting their performance as a catalyst. In particular, we studied the response of the foams to CO2 electrolysis, including the effect of urea as a potential additive to enhance CO2 catalysis. Before electrolysis, the pristine and urea-modified foam copper electrodes consisted of a mixture of cuboctahedra and dendrites. After 35 min of electrolysis, the cuboctahedra and dendrites underwent structural rearrangement affecting catalysis performance. We found that alterations in the morphology, crystallinity and surface composition of the catalyst were conducive to the deactivation of the copper foams.


Sign in / Sign up

Export Citation Format

Share Document