Ultrathin Cobalt Phthalocyanine@Graphene Oxide Layer-Modified Separator for Stable Lithium–Sulfur Batteries

Author(s):  
Chunli Shen ◽  
Yan Li ◽  
Minjian Gong ◽  
Cheng Zhou ◽  
Qinyou An ◽  
...  
2016 ◽  
Vol 4 (43) ◽  
pp. 17033-17041 ◽  
Author(s):  
Feng Wu ◽  
Ji Qian ◽  
Renjie Chen ◽  
Yusheng Ye ◽  
Zhiguo Sun ◽  
...  

A light-weight boron-functionalized reduced graphene oxide layer coated on a separator to improve the cycling stability and rate performance of lithium–sulfur batteries.


2018 ◽  
Vol 5 (4) ◽  
pp. 785-792 ◽  
Author(s):  
Jianmei Han ◽  
Baojuan Xi ◽  
Zhenyu Feng ◽  
Xiaojian Ma ◽  
Junhao Zhang ◽  
...  

A sulfur–hydrazine hydrate chemistry-based method is reported here to integrate the sulfur and N-doped reduced graphene oxide to obtain S@N-rGO composite with 76% sulfur. The as-obtained S@N-rGO composite displays a good rate capability and excellent stability.


Nanoscale ◽  
2021 ◽  
Author(s):  
Fanglei Zeng ◽  
Fang Wang ◽  
Ning Li ◽  
Ke Meng Song ◽  
Shi-Ye Chang ◽  
...  

Li-S battery is considered as one of the most promising battery system because of its large theoretical capacity and high energy density. However, the “shuttle effect” of soluble polysulfides and...


2017 ◽  
Vol 41 (21) ◽  
pp. 12589-12595 ◽  
Author(s):  
M. R. Sovizi ◽  
M. R. Yaftian ◽  
S. T. Seyyedin

Reduced graphene oxide@sulfur nanocomposite as a high-capacity host matrix was prepared and characterized for advanced lithium–sulfur batteries.


2018 ◽  
Vol 6 (35) ◽  
pp. 17132-17141 ◽  
Author(s):  
Wenlong Huang ◽  
Zejing Lin ◽  
Huitian Liu ◽  
Ren Na ◽  
Jianhua Tian ◽  
...  

Cobalt phthalocyanine as a novel electrocatalyst enhances the redox kinetics of polysulfide species effectively for lithium–sulfur batteries.


RSC Advances ◽  
2018 ◽  
Vol 8 (5) ◽  
pp. 2260-2266 ◽  
Author(s):  
Lifeng Cui ◽  
Yanan Xue ◽  
Suguru Noda ◽  
Zhongming Chen

We report a synthesis of a self-supporting composite cathode film, wherein aluminum foil current collector is replaced by FWCNTs and sulfur particles are uniformly wrapped by graphene oxide along with FWCNTs.


2019 ◽  
Vol 6 (9) ◽  
pp. 2528-2538
Author(s):  
Mengxia Li ◽  
Ying Dai ◽  
Xinmei Pei ◽  
Wen Chen

A three-dimensional HrGO with a hierarchically porous structure was successfully synthesized as a sulfur-hosting material with high sulfur loading for high-performance lithium–sulfur batteries.


Sign in / Sign up

Export Citation Format

Share Document