Screening of Transition-Metal Single-Atom Catalysts Anchored on Covalent–Organic Frameworks for Efficient Nitrogen Fixation

Author(s):  
Juan Wang ◽  
Zhihua Zhang ◽  
Yangyang Li ◽  
Yuanyuan Qu ◽  
Yongqiang Li ◽  
...  
2021 ◽  
Vol 23 (14) ◽  
pp. 8784-8791
Author(s):  
Qingling Meng ◽  
Ling Zhang ◽  
Jinge Wu ◽  
Shuwei Zhai ◽  
Xiamin Hao ◽  
...  

Theoretical screening of transition metal atoms anchored on monolayer C9N4 as highly stable, catalytically active and selective single-atom catalysts for nitrogen fixation.


2020 ◽  
Vol 22 (17) ◽  
pp. 9216-9224 ◽  
Author(s):  
Zhen Feng ◽  
Yanan Tang ◽  
Weiguang Chen ◽  
Yi Li ◽  
Renyi Li ◽  
...  

2D graphdiyne is a superior candidate for dispersing single transition metal atoms, which can be used as SACs for nitrogen fixation.


Nano Energy ◽  
2020 ◽  
Vol 68 ◽  
pp. 104304 ◽  
Author(s):  
Tong Yang ◽  
Ting Ting Song ◽  
Jun Zhou ◽  
Shijie Wang ◽  
Dongzhi Chi ◽  
...  

2018 ◽  
Author(s):  
Srimanta Pakhira ◽  
Jose Mendoza-Cortes

<div>Covalent organic frameworks (COFs) have emerged as an important class of nano-porous crystalline materials with many potential applications. They are intriguing platforms for the design of porous skeletons with special functionality at the molecular level. However, despite their extraordinary properties, it is difficult to control their electronic properties, thus hindering the potential implementation in electronic devices. A new form of nanoporous material, COFs intercalated with first row transition metal is proposed to address this fundamental drawback - the lack of electronic tunability. Using first-principles calculations, we have designed 31 new COF materials <i>in-silico</i> by intercalating all of the first row transition metals (TMs) with boroxine-linked and triazine-linked COFs: COF-TM-x (where TM=Sc-Zn and x=3-5). This is a significant addition considering that only 187 experimentally COFs structures has been reported and characterized so far. We have investigated their structure and electronic properties. Specifically, we predict that COF's band gap and density of states (DOSs) can be controlled by intercalating first row transition metal atoms (TM: Sc - Zn) and fine tuned by the concentration of TMs. We also found that the $d$-subshell electron density of the TMs plays the main role in determining the electronic properties of the COFs. Thus intercalated-COFs provide a new strategy to control the electronic properties of materials within a porous network. This work opens up new avenues for the design of TM-intercalated materials with promising future applications in nanoporous electronic devices, where a high surface area coupled with fine-tuned electronic properties are desired.</div>


Author(s):  
Mei Zheng ◽  
Hongbin Xu ◽  
Yi Li ◽  
Kaining Ding ◽  
Yongfan Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document