Strong Enhancement of Photoelectric Conversion Efficiency of Co-hybridized Polymer Solar Cell by Silver Nanoplates and Core–Shell Nanoparticles

2017 ◽  
Vol 9 (6) ◽  
pp. 5358-5365 ◽  
Author(s):  
Wenfei Shen ◽  
Jianguo Tang ◽  
Yao Wang ◽  
Jixian Liu ◽  
Linjun Huang ◽  
...  

2019 ◽  
Vol 17 (43) ◽  
pp. 26-32
Author(s):  
Eman Abd Alkarem

Luminescent solar concentrator (LSC) are used to enhance       photoresponsivity of solar cell. The Quantumdots luminescent solar concentrator (QDLSC) consists of CdSe/CdS core/shell nanoparticles embedded in polyacrylamide polymer matrix positioned on the top surface of the silicon solar cell. This procedure improves the conversion efficiency of the bare silicon solar cell. The conversion efficiency of the solar cell has increased from 7.3% to 10.3%.  this improvement is referred to the widening of the response spectral region window  of the a- Si. Solar cell.



2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Ho Chang ◽  
Chih-Hao Chen ◽  
Mu-Jung Kao ◽  
Hsin-Han Hsiao

This paper aims to develop photoanode material required by dye-sensitized solar cells. The material prepared is in the form of Ag@TiO2core-shell-type nanocomposites. This material is used to replace the titanium oxide powder commonly used in general DSSCs. The prepared Ag@TiO2core-shell-type nanocomposites are mixed with Degussa P25 TiO2in different proportions. Triton X-100 is added and polyethylene glycol (PEG) at 20 wt% is used as a polymer additive. This study tests the particle size and material properties of Ag@TiO2core-shell-type nanocomposites and measures the photoelectric conversion efficiency and IPCE of DSSCs. Experimental results show that the DSSC prepared by Ag@TiO2core-shell-type nanocomposites can achieve a photoelectric conversion efficiency of 3.67%. When Ag@TiO2core-shell-type nanocomposites are mixed with P25 nanoparticles in specific proportions, and when the thickness of the photoelectrode thin film is 28 μm, the photoelectric conversion efficiency can reach 6.06%, with a fill factor of 0.52, open-circuit voltage of 0.64V, and short-circuit density of 18.22 mAcm−2. Compared to the DSSC prepared by P25 TiO2only, the photoelectric conversion efficiency can be raised by 38% under the proposed approach.





2019 ◽  
Vol 21 (41) ◽  
pp. 23179-23186 ◽  
Author(s):  
Shilin Tan ◽  
Yipeng Zhao ◽  
Jiansheng Dong ◽  
Guowei Yang ◽  
Gang Ouyang

Inserting an insulator at the interface in vdW heterostructure solar cell unit can improve the photoelectric conversion efficiency, and the insulator has an optimal thickness.



RSC Advances ◽  
2016 ◽  
Vol 6 (111) ◽  
pp. 110409-110415 ◽  
Author(s):  
Jin Dong ◽  
Baoping Lin

Modified SiO2 was doped into an EVA film containing a Eu3+ complex and the results show that the fluorescence of the EVA composite film increased, which helped to improve the photoelectric conversion efficiency of the solar cell.



2015 ◽  
Vol 737 ◽  
pp. 119-122 ◽  
Author(s):  
Tong Yu Wang ◽  
Peng Wang ◽  
He Lin Wang ◽  
Tie Qiang Zhang

This essay employed the "successive ion layer adsorption and reaction (SILAR)"technology to form PbSe/CdSe core/shell.We use the Pbse/CdSe core/shell replaced PbSe nanocrystals and obtained one new quantum dot solar cells of the inorganic.This new solar cells constituted by the metal oxide films retain the photoelectric conversion efficiency of quantum dot solar cells.At the same time,the stability of the new solar cells is tremendously improved with the oxidation resistance of inorganic oxide.Finally,when Jsc=25.2mA/cm2and Voc=0.36V ,we can conclude the conversion efficiency of the solar cell can be evaluated as 3.929%.



Sign in / Sign up

Export Citation Format

Share Document