High Efficiency Quantum Dot Sensitized Solar Cells Based on Direct Adsorption of Quantum Dots on Photoanodes

2017 ◽  
Vol 9 (27) ◽  
pp. 22549-22559 ◽  
Author(s):  
Wenran Wang ◽  
Guocan Jiang ◽  
Juan Yu ◽  
Wei Wang ◽  
Zhenxiao Pan ◽  
...  
2020 ◽  
Vol 44 (11) ◽  
pp. 4304-4310 ◽  
Author(s):  
Fangfang He ◽  
Wei Wang ◽  
Weinan Xue ◽  
Yiling Xie ◽  
Qianwen Zhou ◽  
...  

A facile method for synthesizing high-quality Cu–In–Se quantum dots (QDs) was developed by Al/Zn co-incorporation. Benefiting from the reduction of trap-state defects in QDs, the efficiency of solar cells basing prepared QDs is obviously improved.


2017 ◽  
Vol 9 (6) ◽  
pp. 5328-5336 ◽  
Author(s):  
Wenxiang Peng ◽  
Jun Du ◽  
Zhenxiao Pan ◽  
Naoki Nakazawa ◽  
Jiankun Sun ◽  
...  

2016 ◽  
Vol 4 (21) ◽  
pp. 8161-8171 ◽  
Author(s):  
Chandu V. V. M. Gopi ◽  
Mallineni Venkata-Haritha ◽  
Young-Seok Lee ◽  
Hee-Je Kim

Metal sulfide decorated with ZnO NRs (ZnO/CoS, ZnO/NiS, ZnO/CuS and ZnO/PbS) were fabricated and used as efficient CEs for QDSSCs.


2013 ◽  
Vol 873 ◽  
pp. 556-561
Author(s):  
Jian Jun Tian

CdS/CdSe quantum dots co-sensitized solar cells (QDSCs) were prepared by combining the successive ion layer absorption and reaction (SILAR) method and chemical bath deposition (CBD) method for the fabrication of CdS and CdSe quantum dots, respectively. In this work, we designed anisotropic nanostructure ZnO photoelectrodes, such as nanorods/nanosheets and nanorods array, for CdS/CdSe quantum dots co-sensitized solar cells. Our study revealed that the performance of QDSCs could be improved by modifying surface of ZnO to increase the loading of quantum dots and reduce the charge recombination.


2015 ◽  
Vol 169 ◽  
pp. 103-108 ◽  
Author(s):  
Ling Li ◽  
Junying Xiao ◽  
Xichuan Yang ◽  
Wenming Zhang ◽  
Huayan Zhang ◽  
...  

2019 ◽  
Vol 125 (8) ◽  
Author(s):  
Ha Thanh Tung ◽  
Doan Van Thuan ◽  
Jun Hieng Kiat ◽  
Dang Huu Phuc

2019 ◽  
Vol 12 (01) ◽  
pp. 1850090
Author(s):  
Zhou Liu ◽  
Zhuoyin Peng ◽  
Jianlin Chen ◽  
Wei Li ◽  
Jian Chen ◽  
...  

Cu2GeSe3 quantum dot is introduced to instead of non-toxic CuInSe2 as a sensitizer for solar cells, which is employed to enhance the photovoltaic performance. Cu2GeSe3 quantum dots with various sizes are prepared by thermolysis process, which are employed for the fabrication of quantum dot-sensitized solar cells (QDSSC) according to assembly linking process. The optical absorption properties of the Cu2GeSe3 quantum dot-sensitized photo-electrodes have been obviously enhanced by the size optimization of quantum dots, which are better than that of CuInSe2-based photo-electrodes. Due to the balance on the deposition quantity and charge transfer property of the quantum dots, 3.9[Formula: see text]nm-sized Cu2GeSe3 QDSSC exhibits the highest current density value and incident photon conversion efficiency response, which result in a higher photovoltaic conversion efficiency than that of CuInSe2 QDSSC. The modulation of Cu2GeSe3 QDs will further improve the performance of photovoltaic devices.


2018 ◽  
Vol 6 (19) ◽  
pp. 8886-8894 ◽  
Author(s):  
Nianqing Fu ◽  
Chun Huang ◽  
Peng Lin ◽  
Mingshan Zhu ◽  
Tao Li ◽  
...  

Dual-functional black phosphorus quantum dot electron selective layer was designed for plastic perovskite solar cells. The efficient electron extraction and improved perovskite film quality contributed to the reasonably high efficiency.


Sign in / Sign up

Export Citation Format

Share Document