Phase, Conductivity, and Surface Coordination Environment in Two-Dimensional Electrochemistry

2019 ◽  
Vol 11 (28) ◽  
pp. 25108-25114
Author(s):  
Yangye Sun ◽  
Peiyuan Zhuang ◽  
Wei Jiang ◽  
Hu Xu ◽  
Simeng Zhang ◽  
...  

2021 ◽  
Vol 23 (7) ◽  
pp. 4178-4186
Author(s):  
Shiqiang Liu ◽  
Zhiwen Cheng ◽  
Yawei Liu ◽  
Xiaoping Gao ◽  
Yujia Tan ◽  
...  

Designing atomically dispersed metal catalysts for the nitrogen reduction reaction (NRR) is an effective approach to achieve better energy conversion efficiencies.



2013 ◽  
Vol 69 (11) ◽  
pp. 1344-1347 ◽  
Author(s):  
Patricio Cancino ◽  
Evgenia Spodine ◽  
Verónica Paredes-García ◽  
Diego Venegas-Yazigi ◽  
Andrés Vega

In the structure of the title compound, {[Cu2(C10H2O8)(H2O)6]·4H2O}n, the benzene-1,2,4,5-tetracarboxylate ligand, (btec)4−, is located on a crystallographic inversion centre in a μ4-coordination mode. The coordination environment of each pentacoordinated CuIIcentre is square pyramidal (SBP), formed by three water molecules and two carboxylate O atoms from two different (btec)4−ligands. The completely deprotonated (btec)4−ligand coordinates in a monodentate mode to four CuIIatoms. The alternation of (btec)4−ligands and SBP CuIIcentres leads to the formation of a planar two-dimensional covalent network of parallelograms, parallel to theabplane. Hydrogen bonds between a basal water molecule and an apical one from an adjacent [Cu(btec)0.5(H2O)3] unit exist in the intralayer space. Hydrogen bonds are also present between the two-dimensional network and the water molecules filling the channels in the structure.



2016 ◽  
Vol 72 (12) ◽  
pp. 1718-1723 ◽  
Author(s):  
David K. Geiger ◽  
Dylan E. Parsons ◽  
Bracco A. Pagano

Poly[tetra-μ2-acetato-κ8O:O′-bis(μ2-benzene-1,2-diamine-κ2N:N′)dicadmium], [Cd2(CH3COO)4(C6H8N2)2]n, (I), and poly[[(μ2-acetato-κ2O:O′)(acetato-κ2O,O′)(μ2-benzene-1,3-diamine-κ2N:N′)cadmium] hemihydrate], {[Cd(CH3COO)2(C6H8N2)]·0.5H2O}n, (II), have two-dimensional polymeric structures in which monomeric units are joined by bridging acetate and benzenediamine ligands. Each of the CdIIions has an O4N2coordination environment. The coordination geometries of the symmetry-independent CdIIions are distorted octahedral and distorted trigonal antiprismatic in (I) and distorted antiprismatic in (II). Both compounds exhibit an intralayer hydrogen-bonding network. In addition, the water of hydration in (II) is involved in interlayer hydrogen bonding.



Author(s):  
Hang-Ju Zhao ◽  
Jian-Ping Ma ◽  
Qi-Kui Liu ◽  
Yu-Bin Dong

A new 1,3,4-oxadiazole-containing bispyridyl ligand, namely 5-(pyridin-4-yl)-3-[2-(pyridin-4-yl)ethyl]-1,3,4-oxadiazole-2(3H)-thione (L), has been used to create the novel complexes tetranitratobis{μ-5-(pyridin-4-yl)-3-[2-(pyridin-4-yl)ethyl]-1,3,4-oxadiazole-2(3H)-thione}zinc(II), [Zn2(NO3)4(C14H12N4OS)2], (I), andcatena-poly[[[dinitratocopper(II)]-bis{μ-5-(pyridin-4-yl)-3-[2-(pyridin-4-yl)ethyl]-1,3,4-oxadiazole-2(3H)-thione}] nitrate acetonitrile sesquisolvate dichloromethane sesquisolvate], {[Cu(NO3)(C14H12N4OS)2]NO3·1.5CH3CN·1.5CH2Cl2}n, (II). Compound (I) presents a distorted rectangular centrosymmetric Zn2L2ring (dimensions 9.56 × 7.06 Å), where each ZnIIcentre lies in a {ZnN2O4} coordination environment. These binuclear zinc metallocycles are linked into a two-dimensional network through nonclassical C—H...O hydrogen bonds. The resulting sheets lie parallel to theacplane. Compound (II), which crystallizes as a nonmerohedral twin, is a coordination polymer with double chains of CuIIcentres linked by bridgingLligands, propagating parallel to the crystallographicaaxis. The CuIIcentres adopt a distorted square-pyramidal CuN4O coordination environment with apical O atoms. The chains in (II) are interlinkedviatwo kinds of π–π stacking interactions along [0\overline 11]. In addition, the structure of (II) contains channels parallel to the crystallographicadirection. The guest components in these channels consist of dichloromethane and acetonitrile solvent molecules and uncoordinated nitrate anions.



2007 ◽  
Vol 63 (11) ◽  
pp. m2668-m2668 ◽  
Author(s):  
Chang-Ju Wu ◽  
Ju-Na Chen ◽  
Jing-Min Shi

In the title complex, [Zn(C10H10N4)3](NO3)2, the six-coordinate ZnII atom lies at the intersection of three twofold axes in a slightly disorted octahedral coordination environment. The N atom of a nitrate anion is located on a threefold axis. In the crystal structure, intermolecular N—H...N and N—H...O hydrogen bonds between cations and anions form a two-dimensional network perpendicular to the c axis.



Author(s):  
Thaiane Gregório ◽  
André Luis Rüdiger ◽  
Giovana G. Nunes ◽  
Jaísa F. Soares ◽  
David L. Hughes

The reaction of terbium(III) nitrate pentahydrate in acetonitrile withN,N′-bis(2-hydroxybenzyl)-N,N′-bis(pyridin-2-ylmethyl)ethylenediamine (H2bbpen), previously deprotonated with triethylamine, produced the mononuclear compound [N,N′-bis(2-oxidobenzyl-κO)-N,N′-bis(pyridin-2-ylmethyl-κN)ethylenediamine-κ2N,N′](nitrato-κ2O,O′)terbium(III), [Tb(C28H28N4O2)(NO3)]. The molecule lies on a twofold rotation axis and the TbIIIion is eight-coordinate with a slightly distorted dodecahedral coordination geometry. In the symmetry-unique part of the molecule, the pyridine and benzene rings are both essentially planar and form a dihedral angle of 61.42 (7)°. In the molecular structure, the N4O4coordination environment is defined by the hexadentate bbpen ligand and the bidentate nitrate anion. In the crystal, a weak C—H...O hydrogen bond links molecules into a two-dimensional network parallel to (001).



Author(s):  
Ilona Raspertova ◽  
Roman Doroschuk ◽  
Dmytro Khomenko ◽  
Rostislav Lampeka

The structure of the title compound, [U(C14H9N3O2)O2(CH3OH)2]·CH3OH, is the first to be reported for an actinide complex including triazole ligands. The UVIatom exhibits a pentagonal–bipyramidal NO6coordination environment, involving two axial oxide ligands [U=O = 1.766 (3) and 1.789 (3) Å], four equatorial O atoms [U—O = 2.269 (3)–2.448 (3) Å] from the ligand and the two coordinated methanol molecules, and one equatorial N atom [U—N = 2.513 (4) Å] from the ligand. In the crystal structure, the complex molecules are linkedviaintermolecular N—H...O and O—H...O hydrogen bonds to form a two-dimensional structure.



2012 ◽  
Vol 68 (8) ◽  
pp. m229-m232
Author(s):  
Di Sun ◽  
Zhi-Hao Yan

A novel infinite one-dimensional silver cylinder, namely poly[μ-ethylenediamine-μ5-(2-sulfanidylbenzoato)-μ4-(2-sulfanidylbenzoato)-tetrasilver(I)], [Ag4(C7H4O2S)2(C2H8N2)]n, has been synthesized by one-pot reaction of equivalent molar silver nitrate and 2-mercaptobenzoic acid (H2mba) in the presence of ethylenediamine (eda). One Ag atom is located in an AgS2NO four-coordinated tetrahedral geometry, two other Ag atoms are in an AgS2O three-coordinated T-shaped geometry and the fourth Ag atom is in an AgSNO coordination environment. The two mba ligands show two different binding modes. The μ2-N:N′-eda ligand, acting as a bridge, combines with mba ligands to extend the AgIions into a one-dimensional silver cylinder incorporating abundant Ag...Ag interactions ranging from 2.9298 (11) to 3.2165 (13) Å. Interchain N—H...O hydrogen bonds extend the one-dimensional cylinder into an undulating two-dimensional sheet, which is further packed into a three-dimensional supramolecular framework by van der Waals interactions; no π–π interactions were observed in the crystal structure.



2016 ◽  
Vol 72 (4) ◽  
pp. 285-290 ◽  
Author(s):  
Xiang-Wen Wu ◽  
Shi Yin ◽  
Wan-Fu Wu ◽  
Jian-Ping Ma

Bimetallic macrocyclic complexes have attracted the attention of chemists and various organic ligands have been used as molecular building blocks, but supramolecular complexes based on semi-rigid organic ligands containing 1,2,4-triazole have remained rare until recently. It is easier to obtain novel topologies by making use of asymmetric semi-rigid ligands in the self-assembly process than by making use of rigid ligands. A new semi-rigid ligand, 3-[(pyridin-4-ylmethyl)sulfanyl]-5-(quinolin-2-yl)-4H-1,2,4-triazol-4-amine (L), has been synthesized and used to generate two novel bimetallic macrocycle complexes, namely bis{μ-3-[(pyridin-4-ylmethyl)sulfanyl]-5-(quinolin-2-yl)-4H-1,2,4-triazol-4-amine}bis[(methanol-κO)(nitrato-κ2O,O′)nickel(II)] dinitrate, [Ni2(NO3)2(C17H14N6S)2(CH3OH)2](NO3)2, (I), and bis{μ-3-[(pyridin-4-ylmethyl)sulfanyl]-5-(quinolin-2-yl)-4H-1,2,4-triazol-4-amine}bis[(methanol-κO)(nitrato-κ2O,O′)zinc(II)] dinitrate, [Zn2(NO3)2(C17H14N6S)2(CH3OH)2](NO3)2, (II), by solution reactions with the inorganic saltsM(NO3)2(M= Ni and Zn, respectively) in mixed solvents. In (I), two NiIIcations with the same coordination environment are linked byLligands through Ni—N bonds to form a bimetallic ring. Compound (I) is extended into a two-dimensional network in the crystallographicacplaneviaN—H...O, O—H...N and O—H...O hydrogen bonds, and neighbouring two-dimensional planes are parallel and form a three-dimensional structureviaπ–π stacking. Compound (II) contains two bimetallic rings with the same coordination environment of the ZnIIcations. The ZnIIcations are bridged byLligands through Zn—N bonds to form the bimetallic rings. One type of bimetallic ring constructs a one-dimensional nanotubeviaO—H...O and N—H...O hydrogen bonds along the crystallographicadirection, and the other constructs zero-dimensional molecular cagesviaO—H...O and N—H...O hydrogen bonds. They are interlinked into a two-dimensional network in theacplane through extensive N—H...O hydrogen bonds, and a three-dimensional supramolecular architecture is formedviaπ–π interactions between the centroids of the benzene rings of the quinoline ring systems.



Author(s):  
Dong Liu ◽  
Ni-Ya Li

Colourless crystals of the title compound, [Cd2(C7H4IO2)4(C12H10N2)(H2O)2]n, were obtained by the self-assembly of Cd(NO3)2·4H2O, 1,2-bis(pyridin-4-yl)ethene (bpe) and 4-iodobenzoic acid (4-IBA). Each CdIIatom is seven-coordinated in a pentagonal–bipyramidal coordination environment by four carboxylate O atoms from two different 4-IBA ligands, two O atoms from two water molecules and one N atom from a bpe ligand. The CdIIcentres are bridged by the aqua molecules and bpe ligands, which lie across centres of inversion, to give a two-dimensional net. Topologically, taking the CdIIatoms as nodes and the μ-aqua and μ-bpe ligands as linkers, the two-dimensional structure can be simplified as a (6,3) network.



Sign in / Sign up

Export Citation Format

Share Document