scholarly journals Enhanced Widefield Quantum Sensing with Nitrogen-Vacancy Ensembles Using Diamond Nanopillar Arrays

2020 ◽  
Vol 12 (11) ◽  
pp. 13421-13427 ◽  
Author(s):  
Daniel J. McCloskey ◽  
Nikolai Dontschuk ◽  
David A. Broadway ◽  
Athavan Nadarajah ◽  
Alastair Stacey ◽  
...  
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yulei Chen ◽  
Zhonghao Li ◽  
Hao Guo ◽  
Dajin Wu ◽  
Jun Tang

AbstractQuantum sensing based on nitrogen-vacancy centers in diamond has shown excellent properties. Combined with the imaging technique, it shows exciting practicability. Here, we demonstrate the simultaneously imaging technique of magnetic field and temperature using a wide-field quantum diamond microscope. We describe the operating principles of the diamond microscope and report its sensitivity (magnetic field ${\sim}1.8~\mu \mbox{T/Hz}^{1/2}$ ∼ 1.8 μ T/Hz 1 / 2 and temperature ${\sim}0.4~\mbox{K/Hz}^{1/2}$ ∼ 0.4 K/Hz 1 / 2 ), spatial resolution (1.3 μm), and field of view ($400 \times 300~\mu \mbox{m}^{2}$ 400 × 300 μ m 2 ). Finally, we use the microscope to obtain images of an integrated cell heater and a PCB, demonstrating its ability in the application of magnetic field and temperature simultaneously imaging at wide-field.


ACS Sensors ◽  
2019 ◽  
Vol 5 (3) ◽  
pp. 703-710 ◽  
Author(s):  
Valentin Radu ◽  
Joshua Colm Price ◽  
Simon James Levett ◽  
Kaarjel Kauslya Narayanasamy ◽  
Thomas David Bateman-Price ◽  
...  

2019 ◽  
Vol 44 (11) ◽  
pp. 2851 ◽  
Author(s):  
Dewen Duan ◽  
Vinaya Kumar Kavatamane ◽  
Sri Ranjini Arumugam ◽  
Ganesh Rahane ◽  
Guan-Xiang Du ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
H. Morishita ◽  
T. Tashima ◽  
D. Mima ◽  
H. Kato ◽  
T. Makino ◽  
...  

Abstract Nitrogen-vacancy (NV) centres in diamond hold promise in quantum sensing applications. A major interest in them is an enhancement of their sensitivity by the extension of the coherence time (T2). In this report, we experimentally generated more than four dressed states in a single NV centre in diamond based on Autler-Townes splitting (ATS). We also observed the extension of the coherence time to T2 ~ 1.5 ms which is more than two orders of magnitude longer than that of the undressed states. As an example of a quantum application using these results we propose a protocol of quantum sensing, which shows more than an order of magnitude enhancement in the sensitivity.


Photoniques ◽  
2021 ◽  
pp. 50-54
Author(s):  
Thierry Debuisschert

Quantum sensing exploits the possibility of manipulating single quantum objects and of measuring external physical quantities with unprecedented accuracy. It offers new functionalities that cannot be obtained with classical means. Quantum sensors can be based on atomic vapours, cold atoms, dopants in solid-state materials, etc. In the latter category, the nitrogen vacancy centre in diamond has received particular attention in recent years due to its very attractive characteristics.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ziwei Qiu ◽  
Uri Vool ◽  
Assaf Hamo ◽  
Amir Yacoby

AbstractQuantum sensing exploits the strong sensitivity of quantum systems to measure small external signals. The nitrogen-vacancy (NV) center in diamond is one of the most promising platforms for real-world quantum sensing applications, predominantly used as a magnetometer. However, its magnetic field sensitivity vanishes when a bias magnetic field acts perpendicular to the NV axis. Here, we introduce a different sensing strategy assisted by the nitrogen nuclear spin that uses the entanglement between the electron and nuclear spins to restore the magnetic field sensitivity. This, in turn, allows us to detect small changes in the magnetic field angle relative to the NV axis. Furthermore, based on the same underlying principle, we show that the NV coupling strength to magnetic noise, and hence its coherence time, exhibits a strong asymmetric angle dependence. This allows us to uncover the directional properties of the local magnetic environment and to realize maximal decoupling from anisotropic noise.


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Kenji Shimazoe ◽  
Mizuki Uenomachi ◽  
Hiroyuki Takahashi

AbstractSingle-photon-emission computed tomography (SPECT) and positron-emission tomography (PET) are highly sensitive molecular detection and imaging techniques that generally measure accumulation of radio-labeled molecules by detecting gamma rays. Quantum sensing of local molecular environment via spin, such as nitrogen vacancy (NV) centers, has also been reported. Here, we describe quantum sensing and imaging using nuclear-spin time-space correlated cascade gamma-rays via a radioactive tracer. Indium-111 (111In) is widely used in SPECT to detect accumulation using a single gamma-ray photon. The time-space distribution of two successive cascade gamma-rays emitted from an 111In atom carries significant information on the chemical and physical state surrounding molecules with double photon coincidence detection. We propose and demonstrate quantum sensing capability of local micro-environment (pH and chelating molecule) in solution along with radioactive tracer accumulation imaging, by using multiple gamma-rays time-and-energy detection. Local molecular environment is extracted through electric quadrupole hyperfine interaction in the intermediate nuclear spin state by the explicit distribution of sub-MeV gamma rays. This work demonstrates a proof of concept, and further work is necessary to increase the sensitivity of the technique for in vivo imaging and to study the effect of scattered radiation for possible application in nuclear medicine.


Sign in / Sign up

Export Citation Format

Share Document