scholarly journals Nuclear spin assisted magnetic field angle sensing

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ziwei Qiu ◽  
Uri Vool ◽  
Assaf Hamo ◽  
Amir Yacoby

AbstractQuantum sensing exploits the strong sensitivity of quantum systems to measure small external signals. The nitrogen-vacancy (NV) center in diamond is one of the most promising platforms for real-world quantum sensing applications, predominantly used as a magnetometer. However, its magnetic field sensitivity vanishes when a bias magnetic field acts perpendicular to the NV axis. Here, we introduce a different sensing strategy assisted by the nitrogen nuclear spin that uses the entanglement between the electron and nuclear spins to restore the magnetic field sensitivity. This, in turn, allows us to detect small changes in the magnetic field angle relative to the NV axis. Furthermore, based on the same underlying principle, we show that the NV coupling strength to magnetic noise, and hence its coherence time, exhibits a strong asymmetric angle dependence. This allows us to uncover the directional properties of the local magnetic environment and to realize maximal decoupling from anisotropic noise.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
H. Morishita ◽  
T. Tashima ◽  
D. Mima ◽  
H. Kato ◽  
T. Makino ◽  
...  

Abstract Nitrogen-vacancy (NV) centres in diamond hold promise in quantum sensing applications. A major interest in them is an enhancement of their sensitivity by the extension of the coherence time (T2). In this report, we experimentally generated more than four dressed states in a single NV centre in diamond based on Autler-Townes splitting (ATS). We also observed the extension of the coherence time to T2 ~ 1.5 ms which is more than two orders of magnitude longer than that of the undressed states. As an example of a quantum application using these results we propose a protocol of quantum sensing, which shows more than an order of magnitude enhancement in the sensitivity.


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2951 ◽  
Author(s):  
Adam M. Wojciechowski ◽  
Paulina Nakonieczna Mariusz Mrózek ◽  
Krystian Sycz ◽  
Andrzej Kruk ◽  
Mateusz Ficek ◽  
...  

Nitrogen-vacancy color centers in diamond are a very promising medium for many sensing applications such as magnetometry and thermometry. In this work, we study nanodiamonds deposited from a suspension onto glass substrates. Fluorescence and optically detected magnetic resonance spectra recorded with the dried-out nanodiamond ensembles are presented and a suitable scheme for tracking the magnetic-field value using a continuous poly-crystalline spectrum is introduced. Lastly, we demonstrate a remote-sensing capability of the high-numerical-aperture imaging fiber bundle with nanodiamonds deposited on its end facet.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
P. Pereyra

We study the time evolution of the survival probability and the spin polarization of a dissipative nondegenerate two-level system in the presence of a magnetic field in the Faraday configuration. We apply the Extended Gaussian Orthogonal Ensemble approach to model the stochastic system-environment interaction and calculate the survival and spin polarization to first and second order of the interaction picture. We present also the time evolution of the thermal average of these quantities as functions of the temperature, the magnetic field, and the energy-levels density, for ρ(ϵ)∝ϵs, in the subohmic, ohmic, and superohmic dissipation forms. We show that the behavior of the spin polarization calculated here agrees rather well with the time evolution of spin polarization observed and calculated, recently, for the electron-nucleus dynamics of Ga centers in dilute (Ga,N)As semiconductors.


2005 ◽  
Vol 475-479 ◽  
pp. 2223-2226
Author(s):  
Zhi-gang Sun ◽  
Masaki Mizuguchi ◽  
Hiroyuki Akinaga

Magnetoresistive switch effect (MRS effect) devices containing two gold (Au) electrodes with a gap less than 2 µm were successfully fabricated on semi-insulting GaAs substrates by wet etching method. Huge MRS effect was observed. Magnetoresistance (MR) ratio reached 1,000,000% under the magnetic filed of 1.5 T when the devices were operated just above the threshold voltage. The magnetic field sensitivity at small magnetic fields was significantly improved. MR ratio of more than 1000% was achieved at 0.03 T. A relative high MR ratio of 100,000% under the magnetic filed of 1.5 T was also achieved when the devices operating before the threshold voltage.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yulei Chen ◽  
Zhonghao Li ◽  
Hao Guo ◽  
Dajin Wu ◽  
Jun Tang

AbstractQuantum sensing based on nitrogen-vacancy centers in diamond has shown excellent properties. Combined with the imaging technique, it shows exciting practicability. Here, we demonstrate the simultaneously imaging technique of magnetic field and temperature using a wide-field quantum diamond microscope. We describe the operating principles of the diamond microscope and report its sensitivity (magnetic field ${\sim}1.8~\mu \mbox{T/Hz}^{1/2}$ ∼ 1.8 μ T/Hz 1 / 2 and temperature ${\sim}0.4~\mbox{K/Hz}^{1/2}$ ∼ 0.4 K/Hz 1 / 2 ), spatial resolution (1.3 μm), and field of view ($400 \times 300~\mu \mbox{m}^{2}$ 400 × 300 μ m 2 ). Finally, we use the microscope to obtain images of an integrated cell heater and a PCB, demonstrating its ability in the application of magnetic field and temperature simultaneously imaging at wide-field.


2021 ◽  
Author(s):  
Philip Gregory ◽  
Jacob Blackmore ◽  
Sarah Bromley ◽  
Jeremy Hutson ◽  
Simon Cornish

Abstract Quantum states with long-lived coherence are essential for quantum computation, simulation and metrology. The nuclear spin states of ultracold molecules prepared in the singlet rovibrational ground state are an excellent candidate for encoding and storing quantum information. However, it is important to understand all sources of decoherence for these qubits, and then eliminate them, in order to reach the longest possible coherence times. Here, we fully characterise the dominant mechanisms for decoherence of a storage qubit in an optically trapped ultracold gas of RbCs molecules using high-resolution Ramsey spectroscopy. Guided by a detailed understanding of the hyperfine structure of the molecule, we tune the magnetic field to where a pair of hyperfine states have the same magnetic moment. These states form a qubit, which is insensitive to variations in magnetic field. Our experiments reveal an unexpected differential tensor light shift between the states, caused by weak mixing of rotational states. We demonstrate how this light shift can be eliminated by setting the angle between the linearly polarised trap light and the applied magnetic field to a magic angle of arccos(1/√3)≈55°. This leads to a coherence time exceeding 6.9 s (90% confidence level). Our results unlock the potential of ultracold molecules as a platform for quantum computation.


2020 ◽  
Vol 10 (5) ◽  
pp. 1638 ◽  
Author(s):  
Afiq Azri Zainudin ◽  
Nurul Azhani Yunus ◽  
Saiful Amri Mazlan ◽  
Muhammad Kashfi Shabdin ◽  
Siti Aishah Abdul Aziz ◽  
...  

Cobalt particles have been introduced as a filler due to the advantages of embedding their magnetic and electrical properties in magnetorheological elastomer (MRE). In the present research, the rheology and resistance of MRE are experimentally evaluated. Isotropic and anisotropic MRE samples containing silicone rubber and cobalt particles were fabricated. The magnetic properties of MRE are conducted using a vibrating sample magnetometer (VSM). The morphological aspects of MRE are observed by using field emission scanning electron microscopy (FESEM) and characterized by energy-dispersive X-ray spectroscopy (EDX). Rheological properties under various magnetic field strengths were measured for the magnetic field, strain amplitude, and frequency sweep test by using a parallel-plate rheometer. Subsequently, the resistance of MRE is tested under different applied forces and magnetic fields. The MRE storage modulus depicted an enhancement in field-dependent modulus across all the applied magnetic fields. The electrical resistance generated from the sample can be manipulated by external magnetic fields and mechanical loads. The conductivity of MRE is due to the existence of cobalt arrangements observed by FESEM. By introducing cobalt as filler and obtaining satisfactory results, the study might open new avenues for cobalt to be used as filler in MRE fabrication for future sensing applications.


Sign in / Sign up

Export Citation Format

Share Document