Role of Bimetallic Interactions in the Enhancement of Catalytic CO2 Reduction by a Macrocyclic Cobalt Catalyst

ACS Catalysis ◽  
2022 ◽  
pp. 1706-1717
Author(s):  
Dmitry E. Polyansky ◽  
David C. Grills ◽  
Mehmed Z. Ertem ◽  
Ken T. Ngo ◽  
Etsuko Fujita
Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 271
Author(s):  
Nisa Ulumuddin ◽  
Fanglin Che ◽  
Jung-Il Yang ◽  
Su Ha ◽  
Jean-Sabin McEwen

Despite its high thermodynamic stability, the presence of a negative electric field is known to facilitate the activation of CO2 through electrostatic effects. To utilize electric fields for a reverse water gas shift reaction, it is critical to elucidate the role of an electric field on a catalyst surface toward activating a CO2 molecule. We conduct a first-principles study to gain an atomic and electronic description of adsorbed CO2 on YSZ (111) surfaces when external electric fields of +1 V/Å, 0 V/Å, and −1 V/Å are applied. We find that the application of an external electric field generally destabilizes oxide bonds, where the direction of the field affects the location of the most favorable oxygen vacancy. The direction of the field also drastically impacts how CO2 adsorbs on the surface. CO2 is bound by physisorption when a +1 V/Å field is applied, a similar interaction as to how it is adsorbed in the absence of a field. This interaction changes to chemisorption when the surface is exposed to a −1 V/Å field value, resulting in the formation of a CO3− complex. The strong interaction is reflected through a direct charge transfer and an orbital splitting within the Olatticep-states. While CO2 remains physisorbed when a +1 V/Å field value is applied, our total density of states analysis indicates that a positive field pulls the charge away from the adsorbate, resulting in a shift of its bonding and antibonding peaks to higher energies, allowing a stronger interaction with YSZ (111). Ultimately, the effect of an electric field toward CO2 adsorption is not negligible, and there is potential in utilizing electric fields to favor the thermodynamics of CO2 reduction on heterogeneous catalysts.


Author(s):  
Xu Hu ◽  
Sai Yao ◽  
Letian Chen ◽  
Xu Zhang ◽  
Menggai Jiao ◽  
...  

Electrochemical CO2 reduction reaction (CO2RR) is a very important approach to realize sustainable development. Single-atom catalysts show advantages in both homogeneous and heterogeneous catalysis, and considerable progress has been made...


2019 ◽  
Vol 244 ◽  
pp. 1013-1020 ◽  
Author(s):  
Hong Pang ◽  
Xianguang Meng ◽  
Hui Song ◽  
Wei Zhou ◽  
Gaoliang Yang ◽  
...  

RSC Advances ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 3798-3802 ◽  
Author(s):  
Jinliang Lin ◽  
Rongying Liao ◽  
Junli Xu

A high efficiency photocatalytic conversion of CO2 into CO has been achieved by construction of a binary liquid system.


2021 ◽  
Author(s):  
Mariana Monteiro ◽  
Federico Dattila ◽  
Bellenod Hagedoorn ◽  
Rodrigo Garcı́a-Muelas ◽  
Núria López ◽  
...  

2021 ◽  
Author(s):  
MUHAMMAD Bilal Akbar ◽  
Yue Gong ◽  
Yanjie Wang ◽  
Abebe Reda Woldu ◽  
Xuehua Zhang ◽  
...  

Catalysts ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 636 ◽  
Author(s):  
Giane B. Damas ◽  
Caetano R. Miranda ◽  
Ricardo Sgarbi ◽  
James M. Portela ◽  
Mariana R. Camilo ◽  
...  

The electrochemical reduction of carbon dioxide into carbon monoxide, hydrocarbons and formic acid has offered an interesting alternative for a sustainable energy scenario. In this context, Sn-based electrodes have attracted a great deal of attention because they present low price and toxicity, as well as high faradaic efficiency (FE) for formic acid (or formate) production at relatively low overpotentials. In this work, we investigate the role of tin oxide surfaces on Sn-based electrodes for carbon dioxide reduction into formate by means of experimental and theoretical methods. Cyclic voltammetry measurements of Sn-based electrodes, with different initial degree of oxidation, result in similar onset potentials for the CO2 reduction to formate, ca. −0.8 to −0.9 V vs. reversible hydrogen electrode (RHE), with faradaic efficiencies of about 90–92% at −1.25 V (vs. RHE). These results indicate that under in-situ conditions, the electrode surfaces might converge to very similar structures, with partially reduced or metastable Sn oxides, which serve as active sites for the CO2 reduction. The high faradaic efficiencies of the Sn electrodes brought by the etching/air exposition procedure is ascribed to the formation of a Sn oxide layer with optimized thickness, which is persistent under in situ conditions. Such oxide layer enables the CO2 “activation”, also favoring the electron transfer during the CO2 reduction reaction due to its better electric conductivity. In order to elucidate the reaction mechanism, we have performed density functional theory calculations on different slab models starting from the bulk SnO and Sn6O4(OH)4 compounds with focus on the formation of -OH groups at the water-oxide interface. We have found that the insertion of CO2 into the Sn-OH bond is thermodynamically favorable, leading to the stabilization of the tin-carbonate species, which is subsequently reduced to produce formic acid through a proton-coupled electron transfer process. The calculated potential for CO2 reduction (E = −1.09 V vs. RHE) displays good agreement with the experimental findings and, therefore, support the CO2 insertion onto Sn-oxide as a plausible mechanism for the CO2 reduction in the potential domain where metastable oxides are still present on the Sn surface. These results not only rationalize a number of literature divergent reports but also provide a guideline for the design of efficient CO2 reduction electrocatalysts.


2020 ◽  
Vol 261 ◽  
pp. 114353 ◽  
Author(s):  
Xi Zhang ◽  
Yong Geng ◽  
Shuai Shao ◽  
Jeffrey Wilson ◽  
Xiaoqian Song ◽  
...  

2014 ◽  
Vol 50 (47) ◽  
pp. 6221-6224 ◽  
Author(s):  
Tong Jin ◽  
Chao Liu ◽  
Gonghu Li

A macrocyclic cobalt catalyst is effectively coupled with TiO2 nanoparticles for photocatalytic CO2 reduction.


Sign in / Sign up

Export Citation Format

Share Document