Global Distribution of the Phase State and Mixing Times within Secondary Organic Aerosol Particles in the Troposphere Based on Room-Temperature Viscosity Measurements

Author(s):  
Adrian M. Maclean ◽  
Ying Li ◽  
Giuseppe V. Crescenzo ◽  
Natalie R. Smith ◽  
Vlassis A. Karydis ◽  
...  
2011 ◽  
Vol 11 (3) ◽  
pp. 9313-9334
Author(s):  
A. Virtanen ◽  
J. Kannosto ◽  
J. Joutsensaari ◽  
E. Saukko ◽  
H. Kuuluvainen ◽  
...  

Abstract. The assessment of the climatic impacts and adverse health effects of atmospheric aerosol particles requires detailed information on particle properties. However, very limited information is available on the morphology and phase state of secondary organic aerosol (SOA) particles. The physical state of particles greatly affects particulate-phase chemical reactions, and thus the growth rates of newly formed atmospheric aerosol particles. Thus verifying the physical phase state of SOA particles gives new and important insight into their formation, subsequent growth, and consequently potential atmospheric impacts. According to our recent study, biogenic SOA particles produced in laboratory chambers from the oxidation of real plant emissions as well as in ambient boreal forest atmospheres can exist in a solid phase in size range >30 nm. In this paper, we extend previously published results to diameters in the range of 17–30 nm. The physical phase of the particles is studied by investigating particle bounce properties utilizing electrical low pressure impactor (ELPI). We also investigate the effect of estimates of particle density on the interpretation of our bounce observations. According to the results presented in this paper, particle bounce clearly decreases with decreasing particle size in sub 30 nm size range. The decreasing bounce can be caused by the differences in composition and phase of large (diameters greater than 30 nm) and smaller (diameters between 17 and 30 nm) particles.


2017 ◽  
Vol 17 (21) ◽  
pp. 13037-13048 ◽  
Author(s):  
Adrian M. Maclean ◽  
Christopher L. Butenhoff ◽  
James W. Grayson ◽  
Kelley Barsanti ◽  
Jose L. Jimenez ◽  
...  

Abstract. When simulating the formation and life cycle of secondary organic aerosol (SOA) with chemical transport models, it is often assumed that organic molecules are well mixed within SOA particles on the timescale of 1 h. While this assumption has been debated vigorously in the literature, the issue remains unresolved in part due to a lack of information on the mixing times within SOA particles as a function of both temperature and relative humidity. Using laboratory data, meteorological fields, and a chemical transport model, we estimated how often mixing times are  < 1 h within SOA in the planetary boundary layer (PBL), the region of the atmosphere where SOA concentrations are on average the highest. First, a parameterization for viscosity as a function of temperature and RH was developed for α-pinene SOA using room-temperature and low-temperature viscosity data for α-pinene SOA generated in the laboratory using mass concentrations of  ∼ 1000 µg m−3. Based on this parameterization, the mixing times within α-pinene SOA are  < 1 h for 98.5 % and 99.9 % of the occurrences in the PBL during January and July, respectively, when concentrations are significant (total organic aerosol concentrations are  > 0.5 µg m−3 at the surface). Next, as a starting point to quantify how often mixing times of organic molecules are  < 1 h within α-pinene SOA generated using low, atmospherically relevant mass concentrations, we developed a temperature-independent parameterization for viscosity using the room-temperature viscosity data for α-pinene SOA generated in the laboratory using a mass concentration of  ∼ 70 µg m−3. Based on this temperature-independent parameterization, mixing times within α-pinene SOA are  < 1 h for 27 and 19.5 % of the occurrences in the PBL during January and July, respectively, when concentrations are significant. However, associated with these conclusions are several caveats, and due to these caveats we are unable to make strong conclusions about how often mixing times of organic molecules are  < 1 h within α-pinene SOA generated using low, atmospherically relevant mass concentrations. Finally, a parameterization for viscosity of anthropogenic SOA as a function of temperature and RH was developed using sucrose–water data. Based on this parameterization, and assuming sucrose is a good proxy for anthropogenic SOA, 70 and 83 % of the mixing times within anthropogenic SOA in the PBL are  < 1 h for January and July, respectively, when concentrations are significant. These percentages are likely lower limits due to the assumptions used to calculate mixing times.


2011 ◽  
Vol 11 (16) ◽  
pp. 8759-8766 ◽  
Author(s):  
A. Virtanen ◽  
J. Kannosto ◽  
H. Kuuluvainen ◽  
A. Arffman ◽  
J. Joutsensaari ◽  
...  

Abstract. The assessment of the climatic impacts and adverse health effects of atmospheric aerosol particles requires detailed information on particle properties. However, very limited information is available on the morphology and phase state of secondary organic aerosol (SOA) particles. The physical state of particles greatly affects particulate-phase chemical reactions, and thus the growth rates of newly formed atmospheric aerosol. Thus verifying the physical phase state of SOA particles gives new and important insight into their formation, subsequent growth, and consequently potential atmospheric impacts. According to our recent study, biogenic SOA particles produced in laboratory chambers from the oxidation of real plant emissions as well as in ambient boreal forest atmospheres can exist in a solid phase in size range >30 nm. In this paper, we extend previously published results to diameters in the range of 17–30 nm. The physical phase of the particles is studied by investigating particle bounce properties utilizing electrical low pressure impactor (ELPI). We also investigate the effect of estimates of particle density on the interpretation of our bounce observations. According to the results presented in this paper, particle bounce clearly decreases with decreasing particle size in sub 30 nm size range. The comparison measurements by ammonium sulphate and investigation of the particle impaction velocities strongly suggest that the decreasing bounce is caused by the differences in composition and phase of large (diameters greater than 30 nm) and smaller (diameters between 17 and 30 nm) particles.


2013 ◽  
Vol 15 (8) ◽  
pp. 2983 ◽  
Author(s):  
Evan Abramson ◽  
Dan Imre ◽  
Josef Beránek ◽  
Jacqueline Wilson ◽  
Alla Zelenyuk

2017 ◽  
Author(s):  
Adrian M. Maclean ◽  
Christopher L. Butenhoff ◽  
James W. Grayson ◽  
Kelley Barsanti ◽  
Jose L. Jimenez ◽  
...  

Abstract. When simulating the formation and life cycle of secondary organic aerosol (SOA) with chemical transport models, it is often assumed that organic molecules are well mixed within SOA particles on the time scale of 1 h. While this assumption has been debated vigorously in the literature, the issue remains unresolved in part due to a lack of information on the mixing times within SOA particles as a function of both temperature and relative humidity. Using laboratory data, meteorological fields and a chemical transport model, we determine how often mixing times are


2008 ◽  
Vol 42 (27) ◽  
pp. 6710-6720 ◽  
Author(s):  
Charles L. Blanchard ◽  
George M. Hidy ◽  
Shelley Tanenbaum ◽  
Eric Edgerton ◽  
Benjamin Hartsell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document