scholarly journals Targeted Structure–Activity Analysis of Endochin-like Quinolones Reveals Potent Qi and Qo Site Inhibitors of Toxoplasma gondii and Plasmodium falciparum Cytochrome bc1 and Identifies ELQ-400 as a Remarkably Effective Compound against Acute Experimental Toxoplasmosis

2018 ◽  
Vol 4 (11) ◽  
pp. 1574-1584 ◽  
Author(s):  
Erin V. McConnell ◽  
Igor Bruzual ◽  
Sovitj Pou ◽  
Rolf Winter ◽  
Rozalia A. Dodean ◽  
...  
2018 ◽  
Vol 143 ◽  
pp. 1139-1147 ◽  
Author(s):  
Christina Spry ◽  
Alan L. Sewell ◽  
Yuliya Hering ◽  
Mathew V.J. Villa ◽  
Jonas Weber ◽  
...  

2004 ◽  
Vol 48 (9) ◽  
pp. 3241-3245 ◽  
Author(s):  
Mei-Lin Go ◽  
Mei Liu ◽  
Prapon Wilairat ◽  
Philip J. Rosenthal ◽  
Kevin J. Saliba ◽  
...  

ABSTRACT A series of alkoxylated and hydroxylated chalcones previously reported to have antiplasmodial activities in vitro were investigated for their effects on the new permeation pathways induced by the malaria parasite in the host erythrocyte membrane. Of 21 compounds with good antiplasmodial activities (50% inhibitory concentrations [IC50s], ≤20 μM), 8 members were found to inhibit sorbitol-induced lysis of parasitized erythrocytes to a significant extent (≤40% of control values) at a concentration (10 μM) that was close to their antiplasmodial IC50s. Qualitative structure-activity analysis suggested that activity was governed to a greater extent by a substitution on ring B than on ring A of the chalcone template. Most of the active compounds had methoxy or dimethoxy groups on ring B. Considerable variety was permitted on ring A in terms of the electron-donating or -withdrawing property. Lipophilicity did not appear to be an important determinant for activity. Although they are not exceptionally potent as inhibitors (lowest IC50, 1.9 μM), the chalcones compare favorably with other more potent inhibitors in terms of their selective toxicities against plasmodia and their neutral character.


2013 ◽  
Vol 56 (22) ◽  
pp. 9199-9221 ◽  
Author(s):  
Jeremy Shonberg ◽  
Carmen Klein Herenbrink ◽  
Laura López ◽  
Arthur Christopoulos ◽  
Peter J. Scammells ◽  
...  

2019 ◽  
Vol 16 (5) ◽  
pp. e1800662
Author(s):  
Tonino G. Adessi ◽  
José L. Borioni ◽  
Natalia B. Pigni ◽  
Jaume Bastida ◽  
Valeria Cavallaro ◽  
...  

2021 ◽  
Vol 6 (3) ◽  
pp. 118
Author(s):  
Ferenc Orosz

In 2009, apicortin was identified in silico as a characteristic protein of apicomplexans that also occurs in the placozoa, Trichoplax adhaerens. Since then, it has been found that apicortin also occurs in free-living cousins of apicomplexans (chromerids) and in flagellated fungi. It contains a partial p25-α domain and a doublecortin (DCX) domain, both of which have tubulin/microtubule binding properties. Apicortin has been studied experimentally in two very important apicomplexan pathogens, Toxoplasma gondii and Plasmodium falciparum. It is localized in the apical complex in both parasites. In T. gondii, apicortin plays a key role in shaping the structure of a special tubulin polymer, conoid. In both parasites, its absence or downregulation has been shown to impair pathogen–host interactions. Based on these facts, it has been suggested as a therapeutic target for treatment of malaria and toxoplasmosis.


1998 ◽  
Vol 111 (13) ◽  
pp. 1831-1839 ◽  
Author(s):  
J.C. Pinder ◽  
R.E. Fowler ◽  
A.R. Dluzewski ◽  
L.H. Bannister ◽  
F.M. Lavin ◽  
...  

The genome of the malaria parasite, Plasmodium falciparum, contains a myosin gene sequence, which bears a close homology to one of the myosin genes found in another apicomplexan parasite, Toxoplasma gondii. A polyclonal antibody was generated against an expressed polypeptide of molecular mass 27,000, based on part of the deduced sequence of this myosin. The antibody reacted with the cognate antigen and with a component of the total parasite protein on immunoblots, but not with vertebrate striated or smooth muscle myosins. It did, however, recognise two components in the cellular protein of Toxoplasma gondii. The antibody was used to investigate stage-specificity of expression of the myosin (here designated Pf-myo1) in P. falciparum. The results showed that the protein is synthesised in mature schizonts and is present in merozoites, but vanishes after the parasite enters the red cell. Pf-myo1 was found to be largely, though not entirely, associated with the particulate parasite cell fraction and is thus presumably mainly membrane bound. It was not solubilised by media that would be expected to dissociate actomyosin or myosin filaments, or by non-ionic detergent. Immunofluorescence revealed that in the merozoite and mature schizont Pf-myo1 is predominantly located around the periphery of the cell. Immuno-gold electron microscopy also showed the presence of the myosin around almost the entire parasite periphery, and especially in the region surrounding the apical prominence. Labelling was concentrated under the plasma membrane but was not seen in the apical prominence itself. This suggests that Pf-myo1 is associated with the plasma membrane or with the outer membrane of the subplasmalemmal cisterna, which forms a lining to the plasma membrane, with a gap at the apical prominence. The results lead to a conjectural model of the invasion mechanism.


Sign in / Sign up

Export Citation Format

Share Document