scholarly journals Selective Conversion of CO2 into Cyclic Carbonate on Atom Level Catalysts

Author(s):  
Zhiqiang Zheng ◽  
Zhongqiang Wang ◽  
Yurui Xue ◽  
Feng He ◽  
Yuliang Li
2019 ◽  
Author(s):  
Wengong Jin ◽  
Regina Barzilay ◽  
Tommi S Jaakkola

The problem of accelerating drug discovery relies heavily on automatic tools to optimize precursor molecules to afford them with better biochemical properties. Our work in this paper substantially extends prior state-of-the-art on graph-to-graph translation methods for molecular optimization. In particular, we realize coherent multi-resolution representations by interweaving trees over substructures with the atom-level encoding of the original molecular graph. Moreover, our graph decoder is fully autoregressive, and interleaves each step of adding a new substructure with the process of resolving its connectivity to the emerging molecule. We evaluate our model on multiple molecular optimization tasks and show that our model outperforms previous state-of-the-art baselines by a large margin.


2015 ◽  
Vol 19 (8) ◽  
pp. 681-694 ◽  
Author(s):  
Xian-Dong Lang ◽  
Xiao-Fang Liu ◽  
Liang-Nian He

1979 ◽  
Vol 44 (5) ◽  
pp. 1496-1509 ◽  
Author(s):  
Pavel Kočovský ◽  
Václav Černý

Acid cleavage of the acetoxy epoxide IIIa with aqueous perchloric acid or hydrobromic acid gave two types of products, i.e. the diol Va or the bromohydrin VIa, and the cyclic ether VIII. The latter compound arises by participation of ether oxygen of the ester group. On reaction with perchloric acid the epoxide IVa gave the diol XIIIa as a product of a normal reaction and the isomeric diol Xa as a product arising by intramolecular participation of the carbonyl oxygen of the 19-acetoxy group. Participation of the 19-ester group is confirmed by the formation of the cyclic carbonate XI when the 19-carbonate IVb is treated analogously. On reaction with hydrobromic acid, the epoxide IVa gave solely the bromohydrin XIVa as a product of the normal reaction course. Discussed is the similarity of these reactions with electrophilic additions to the related 19-acetoxy olefins I and II, the mechanism, the difference in behavior of both epoxides III and IV, the dependence of the product ratio on the nucleophility of the attacking species, and the competition between participation of an ambident neighboring group and an external nucleophile attack.


2014 ◽  
Vol 16 (2) ◽  
pp. 617-626 ◽  
Author(s):  
Sibao Liu ◽  
Yasushi Amada ◽  
Masazumi Tamura ◽  
Yoshinao Nakagawa ◽  
Keiichi Tomishige
Keyword(s):  
One Pot ◽  

Small Methods ◽  
2021 ◽  
pp. 2100400
Author(s):  
Minki Jun ◽  
Heesu Yang ◽  
Dongyong Kim ◽  
Gi Joo Bang ◽  
Minah Kim ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 628
Author(s):  
Adolfo Benedito ◽  
Eider Acarreta ◽  
Enrique Giménez

The present paper describes a greener sustainable route toward the synthesis of NIPHUs. We report a highly efficient solvent-free process to produce [4,4′-bi(1,3-dioxolane)]-2,2′-dione (BDC), involving CO2, as renewable feedstock, and bis-epoxide (1,3-butadiendiepoxide) using only metal–organic frameworks (MOFs) as catalysts and cetyltrimethyl-ammonium bromide (CTAB) as a co-catalyst. This synthetic procedure is evaluated in the context of reducing global emissions of waste CO2 and converting CO2 into useful chemical feedstocks. The reaction was carried out in a pressurized reactor at pressures of 30 bars and controlled temperatures of around 120–130 °C. This study examines how reaction parameters such as catalyst used, temperature, or reaction time can influence the molar mass, yield, or reactivity of BDC. High BDC reactivity is essential for producing high molar mass linear non-isocyanate polyhydroxyurethane (NIPHU) via melt-phase polyaddition with aliphatic diamines. The optimized Al-OH-fumarate catalyst system described in this paper exhibited a 78% GC-MS conversion for the desired cyclic carbonates, in the absence of a solvent and a 50 wt % chemically fixed CO2. The cycloaddition reaction could also be carried out in the absence of CTAB, although lower cyclic carbonate yields were observed.


2021 ◽  
Vol 6 (17) ◽  
pp. 4124-4128
Author(s):  
Xiaoyu Shi ◽  
Xin Ye ◽  
Jiong Cheng ◽  
Xiaoguang Wang ◽  
Pengfei Chen ◽  
...  

2021 ◽  
Vol 149 ◽  
pp. 110397
Author(s):  
Tianfo Guo ◽  
Yongqiang Li ◽  
Zhenjiang Li ◽  
Haoying Tong ◽  
Luoyu Gao ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4097
Author(s):  
Wooyong Seong ◽  
Hyungwoo Hahm ◽  
Seyong Kim ◽  
Jongwoo Park ◽  
Khalil A. Abboud ◽  
...  

Bimetallic bis-urea functionalized salen-aluminum catalysts have been developed for cyclic carbonate synthesis from epoxides and CO2. The urea moiety provides a bimetallic scaffold through hydrogen bonding, which expedites the cyclic carbonate formation reaction under mild reaction conditions. The turnover frequency (TOF) of the bis-urea salen Al catalyst is three times higher than that of a μ-oxo-bridged catalyst, and 13 times higher than that of a monomeric salen aluminum catalyst. The bimetallic reaction pathway is suggested based on urea additive studies and kinetic studies. Additionally, the X-ray crystal structure of a bis-urea salen Ni complex supports the self-assembly of the bis-urea salen metal complex through hydrogen bonding.


Sign in / Sign up

Export Citation Format

Share Document