scholarly journals Epitaxial Growth of Quasi-One-Dimensional Bismuth-Halide Chains with Atomically Sharp Topological Non-Trivial Edge States

ACS Nano ◽  
2021 ◽  
Author(s):  
Jincheng Zhuang ◽  
Jin Li ◽  
Yundan Liu ◽  
Dan Mu ◽  
Ming Yang ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Milad Jangjan ◽  
Mir Vahid Hosseini

AbstractWe theoretically report the finding of a new kind of topological phase transition between a normal insulator and a topological metal state where the closing-reopening of bandgap is accompanied by passing the Fermi level through an additional band. The resulting nontrivial topological metal phase is characterized by stable zero-energy localized edge states that exist within the full gapless bulk states. Such states living on a quasi-one-dimensional system with three sublattices per unit cell are protected by hidden inversion symmetry. While other required symmetries such as chiral, particle-hole, or full inversion symmetry are absent in the system.


2021 ◽  
Vol 126 (23) ◽  
Author(s):  
Johannes Jung ◽  
Artem Odobesko ◽  
Robin Boshuis ◽  
Andrzej Szczerbakow ◽  
Tomasz Story ◽  
...  

2015 ◽  
Vol 114 (6) ◽  
Author(s):  
A. Takayama ◽  
T. Sato ◽  
S. Souma ◽  
T. Oguchi ◽  
T. Takahashi

2020 ◽  
Vol 823 ◽  
pp. 153758
Author(s):  
Y.J. Jin ◽  
X.E. Zheng ◽  
S.J. Gong ◽  
C. Ke ◽  
M.Q. Xiao ◽  
...  

2020 ◽  
Vol 101 (15) ◽  
Author(s):  
Niclas Müller ◽  
Dante M. Kennes ◽  
Jelena Klinovaja ◽  
Daniel Loss ◽  
Herbert Schoeller

Nanophotonics ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 1337-1347 ◽  
Author(s):  
Simon R. Pocock ◽  
Paloma A. Huidobro ◽  
Vincenzo Giannini

AbstractThe existence of topologically protected edge modes is often cited as a highly desirable trait of topological insulators. However, these edge states are not always present. A realistic physical treatment of long-range hopping in a one-dimensional dipolar system can break the symmetry that protects the edge modes without affecting the bulk topological number, leading to a breakdown in bulk-edge correspondence (BEC). Hence, it is important to gain a better understanding of where and how this occurs, as well as how to measure it. Here we examine the behaviour of the bulk and edge modes in a dimerised chain of metallic nanoparticles and in a simpler non-Hermitian next-nearest-neighbour model to provide some insights into the phenomena of bulk-edge breakdown. We construct BEC phase diagrams for the simpler case and use these ideas to devise a measure of symmetry-breaking for the plasmonic system based on its bulk properties. This provides a parameter regime in which BEC is preserved in the topological plasmonic chain, as well as a framework for assessing this phenomenon in other systems.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Anwei Zhang ◽  
Luojia Wang ◽  
Xianfeng Chen ◽  
Vladislav V. Yakovlev ◽  
Luqi Yuan

AbstractEfficient manipulation of quantum states is a key step towards applications in quantum information, quantum metrology, and nonlinear optics. Recently, atomic arrays have been shown to be a promising system for exploring topological quantum optics and robust control of quantum states, where the inherent nonlinearity is included through long-range hoppings. Here we show that a one-dimensional atomic array in a periodic magnetic field exhibits characteristic properties associated with an effective two-dimensional Hofstadter-butterfly-like model. Our work points out super- and sub-radiant topological edge states localized at the boundaries of the atomic array despite featuring long-range interactions, and opens an avenue of exploring an interacting quantum optical platform with synthetic dimensions.


1997 ◽  
Vol 11 (18) ◽  
pp. 2157-2182 ◽  
Author(s):  
Kazumoto Iguchi

In this paper we discuss the application of the Saxon–Hutner theorem and its converse theorem in one-dimensional binary disordered lattices to the one-dimensional binary quasiperiodic lattices. We first summarize some basic theorems in one-dimensional periodic lattices. We discuss how the bulk and edge states are treated in the transfer matrix method. Second, we review the Saxon–Hutner theorem and prove the converse theorem, using the so-called Fricke identities. Third, we present an alternative approach for a rigorous proof of the existence of a Cantor-set spectrum in the Fibonacci lattice and in the related binary quasiperiodic lattices by means of the theorems together with their trace map with the invariant I. We obtain that if I > 0, then the spectrum is always a Cantor set, which was first proved for the Fibonacci lattice by Sütö and generalized for other quasiperiodic lattices by Bellissard, Iochum, Scopolla, and Testard. Fourth, we rigorously prove the existence of extended states in the spectrum of a class of binary quasiperiodic lattices first studied by Kolář and Ali. Fifth, we discuss the so-called gap labeling theorem emphasized by Bellissard and the classic argument of Kohn and Thouless for localized states in a one-dimensional disordered lattice in terms of the language of the transfer matrix method.


Sign in / Sign up

Export Citation Format

Share Document