scholarly journals Comprehensive Investigation of Dynamic Characteristics of Amphoteric Surfactant–Sulfonated Polymer Solution on Carbonate Rocks in Reservoir Conditions

ACS Omega ◽  
2020 ◽  
Vol 5 (29) ◽  
pp. 18123-18133
Author(s):  
Xianmin Zhou ◽  
Muhammad Shahzad Kamal ◽  
Alhasan B. Fuseni
Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1046 ◽  
Author(s):  
Saeed Akbari ◽  
Syed Mohammad Mahmood ◽  
Hosein Ghaedi ◽  
Sameer Al-Hajri

Copolymers of acrylamide with the sodium salt of 2-acrylamido-2-methylpropane sulfonic acid—known as sulfonated polyacrylamide polymers—had been shown to produce very promising results in the enhancement of oil recovery, particularly in polymer flooding. The aim of this work is to develop an empirical model through the use of a design of experiments (DOE) approach for bulk viscosity of these copolymers as a function of polymer characteristics (i.e., sulfonation degree and molecular weight), oil reservoir conditions (i.e., temperature, formation brine salinity and hardness) and field operational variables (i.e., polymer concentration, shear rate and aging time). The data required for the non-linear regression analysis were generated from 120 planned experimental runs, which had used the Box-Behnken construct from the typical Response Surface Methodology (RSM) design. The data were collected during rheological experiments and the model that was constructed had been proven to be acceptable with the Adjusted R-Squared value of 0.9624. Apart from showing the polymer concentration as being the most important factor in the determination of polymer solution viscosity, the evaluation of the model terms as well as the Sobol sensitivity analysis had also shown a considerable interaction between the process parameters. As such, the proposed viscosity model can be suitably applied to the optimization of the polymer solution properties for the polymer flooding process and the prediction of the rheological data required for polymer flood simulators.


2012 ◽  
Author(s):  
Xianmin Zhou ◽  
Ming Han ◽  
Alhasan B. Fuseni ◽  
Ali A. Yousef

2019 ◽  
Vol 17 (2) ◽  
Author(s):  
M. Wahdanadi Haidar ◽  
Reza Wardhana ◽  
M. Iskan ◽  
M. Syamsu Rosid

The pore systems in carbonate reservoirs are more complex than the pore systems in clastic rocks. There are three types of pores in carbonate rocks: interparticle pores, stiff pores and cracks. The complexity of the pore types can lead to changes in the P-wave velocity by up to 40%, and carbonate reservoir characterization becomes difficult when the S-wave velocity is estimated using the dominant interparticle pore type only. In addition, the geometry of the pores affects the permeability of the reservoir. Therefore, when modelling the elastic modulus of the rock it is important to take into account the complexity of the pore types in carbonate rocks. The Differential Effective Medium (DEM) is a method for modelling the elastic modulus of the rock that takes into account the heterogeneity in the types of pores in carbonate rocks by adding pore-type inclusions little by little into the host material until the required proportion of the material is reached. In addition, the model is optimized by calculating the bulk modulus of the fluid filler porous rock under reservoir conditions using the Adaptive Batzle-Wang method. Once a fluid model has been constructed under reservoir conditions, the model is entered as input for the P-wave velocity model, which is then used to estimate the velocity of the S-wave and the proportion of primary and secondary pore types in the rock. Changes in the characteristics of the P-wave which are sensitive to the presence of fluid lead to improvements in the accuracy of the P-wave model, so the estimated S-wave velocity and the calculated ratio of primary and secondary pores in the reservoir are more reliable.


Sign in / Sign up

Export Citation Format

Share Document