scholarly journals In Situ One-Step Synthesis of Platinum Nanoparticles Supported on Metal–Organic Frameworks as an Effective and Stable Catalyst for Selective Hydrogenation of 5-Hydroxymethylfurfural

ACS Omega ◽  
2020 ◽  
Vol 5 (26) ◽  
pp. 16183-16188
Author(s):  
Kaixuan Wang ◽  
Weiliang Zhao ◽  
Qingxiao Zhang ◽  
Hexing Li ◽  
Fang Zhang
2017 ◽  
Vol 5 (15) ◽  
pp. 7001-7014 ◽  
Author(s):  
Tao Meng ◽  
Jinwen Qin ◽  
Shuguang Wang ◽  
Di Zhao ◽  
Baoguang Mao ◽  
...  

Co0.85Se@NC obtained by directly selenizing ZIF-67 can be used as a trifunctional catalyst for water splitting and Zn–air batteries.


Author(s):  
Stephen J. I. Shearan ◽  
Jannick Jacobsen ◽  
Ferdinando Costantino ◽  
Roberto D’Amato ◽  
Dmitri Novikov ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 722
Author(s):  
Ioanna Christodoulou ◽  
Tom Bourguignon ◽  
Xue Li ◽  
Gilles Patriarche ◽  
Christian Serre ◽  
...  

In recent years, Metal-Organic Frameworks (MOFs) have attracted a growing interest for biomedical applications. The design of MOFs should take into consideration the subtle balance between stability and biodegradability. However, only few studies have focused on the MOFs’ stability in physiological media and their degradation mechanism. Here, we investigate the degradation of mesoporous iron (III) carboxylate MOFs, which are among the most employed MOFs for drug delivery, by a set of complementary methods. In situ AFM allowed monitoring with nanoscale resolution the morphological, dimensional, and mechanical properties of a series of MOFs in phosphate buffer saline and in real time. Depending on the synthetic route, the external surface presented either well-defined crystalline planes or initial defects, which influenced the degradation mechanism of the particles. Moreover, MOF stability was investigated under different pH conditions, from acidic to neutral. Interestingly, despite pronounced erosion, especially at neutral pH, the dimensions of the crystals were unchanged. It was revealed that the external surfaces of MOF crystals rapidly respond to in situ changes of the composition of the media they are in contact with. These observations are of a crucial importance for the design of nanosized MOFs for drug delivery applications.


2021 ◽  
Author(s):  
Hexiang Li ◽  
Fawei Zhu ◽  
Jun Xiang ◽  
Fangbin Wang ◽  
Qi Liu ◽  
...  

We herein report a facile and scalable strategy for fabrication of the metal organic frameworks (MOFs) based composite by in-situ growing ZIF-8 on the gold nanoparticles (AuNPs) loaded magnetic carbon...


Sign in / Sign up

Export Citation Format

Share Document