scholarly journals Solubility of Piperine and Its Inclusion Complexes in Biorelevant Media and Their Effect on Attenuating Mouse Ileum Contractions

ACS Omega ◽  
2021 ◽  
Vol 6 (10) ◽  
pp. 6953-6964
Author(s):  
Toshinari Ezawa ◽  
Yukiko Inagaki ◽  
Kinami Kashiwaba ◽  
Namiko Matsumoto ◽  
Hajime Moteki ◽  
...  
2001 ◽  
Vol 120 (5) ◽  
pp. A38-A39
Author(s):  
M WLK ◽  
C WANG ◽  
M VENICHAKI ◽  
S KUHNTMOORE ◽  
D ZHAO ◽  
...  

2001 ◽  
Vol 120 (5) ◽  
pp. A198-A198
Author(s):  
G SANGER ◽  
M MUNONYARA ◽  
H PROSSER ◽  
M PANGALOS ◽  
A HUNTER ◽  
...  

2020 ◽  
Author(s):  
Vladimir Katev ◽  
Zahari Vinarov ◽  
Slavka S. Tcholakova

Despite the widespread use of lipid excipients in both academic research and oral formulation development, rational selection guidelines are still missing. In the current study, we aimed to establish a link between the molecular structure of commonly used polar lipids and drug solubilization in biorelevant media. We studied the effect of 26 polar lipids of the fatty acid, phospholipid or monoglyceride type on the solubilization of fenofibrate in a two-stage <i>in vitro</i> GI tract model. The main trends were checked also with progesterone and danazol.<br>Based on their fenofibrate solubilization efficiency, the polar lipids can be grouped in 3 main classes. Class 1 substances (n = 5) provide biggest enhancement of drug solubilization (>10-fold) and are composed only by unsaturated compounds. Class 2 materials (n = 10) have an intermediate effect (3-10 fold increase) and are composed primarily (80 %) of saturated compounds. Class 3 materials (n = 11) have very low or no effect on drug solubilization and are entirely composed of saturated compounds.<br>The observed behaviour of the polar lipids was rationalized by using two classical physicochemical parameters: the acyl chain phase transition temperature (<i>T</i><sub>m</sub>) and the critical micellar concentration (CMC). Hence, the superior performance of class 1 polar lipids was explained by the double bonds in their acyl chains, which: (1) significantly decrease <i>T</i><sub>m</sub>, allowing these C18 lipids to form colloidal aggregates and (2) prevent tight packing of the molecules in the aggregates, resulting in bigger volume available for drug solubilization. Long-chain (C18) saturated polar lipids had no significant effect on drug solubilization because their <i>T</i><sub>m</sub> was much higher than the temperature of the experiment (<i>T</i> = 37 C) and, therefore, their association in colloidal aggregates was limited. On the other end of the spectrum, the short chain octanoic acid manifested a high CMC (50 mM), which had to be exceeded in order to enhance drug solubilization. When these two parameters were satisfied (C > CMC, <i>T</i><sub>m</sub> < <i>T</i><sub>exp</sub>), the increase of the polar lipid chain length increased the drug solubilization capacity (similarly to classical surfactants), due to the decreased CMC and bigger volume available for solubilization.<br>The hydrophilic head group also has a dramatic impact on the drug solubilization enhancement, with polar lipids performance decreasing in the order: choline phospholipids > monoglycerides > fatty acids.<br>As both the acyl chain length and the head group type are structural features of the polar lipids, and not of the solubilized drugs, the impact of <i>T</i><sub>m</sub> and CMC on solubilization by polar lipids should hold true for a wide variety of hydrophobic molecules. The obtained mechanistic insights can guide rational drug formulation development and thus support modern drug discovery pipelines.<br>


2020 ◽  
Author(s):  
Vladimir Katev ◽  
Zahari Vinarov ◽  
Slavka S. Tcholakova

Despite the widespread use of lipid excipients in both academic research and oral formulation development, rational selection guidelines are still missing. In the current study, we aimed to establish a link between the molecular structure of commonly used polar lipids and drug solubilization in biorelevant media. We studied the effect of 26 polar lipids of the fatty acid, phospholipid or monoglyceride type on the solubilization of fenofibrate in a two-stage <i>in vitro</i> GI tract model. The main trends were checked also with progesterone and danazol.<br>Based on their fenofibrate solubilization efficiency, the polar lipids can be grouped in 3 main classes. Class 1 substances (n = 5) provide biggest enhancement of drug solubilization (>10-fold) and are composed only by unsaturated compounds. Class 2 materials (n = 10) have an intermediate effect (3-10 fold increase) and are composed primarily (80 %) of saturated compounds. Class 3 materials (n = 11) have very low or no effect on drug solubilization and are entirely composed of saturated compounds.<br>The observed behaviour of the polar lipids was rationalized by using two classical physicochemical parameters: the acyl chain phase transition temperature (<i>T</i><sub>m</sub>) and the critical micellar concentration (CMC). Hence, the superior performance of class 1 polar lipids was explained by the double bonds in their acyl chains, which: (1) significantly decrease <i>T</i><sub>m</sub>, allowing these C18 lipids to form colloidal aggregates and (2) prevent tight packing of the molecules in the aggregates, resulting in bigger volume available for drug solubilization. Long-chain (C18) saturated polar lipids had no significant effect on drug solubilization because their <i>T</i><sub>m</sub> was much higher than the temperature of the experiment (<i>T</i> = 37 C) and, therefore, their association in colloidal aggregates was limited. On the other end of the spectrum, the short chain octanoic acid manifested a high CMC (50 mM), which had to be exceeded in order to enhance drug solubilization. When these two parameters were satisfied (C > CMC, <i>T</i><sub>m</sub> < <i>T</i><sub>exp</sub>), the increase of the polar lipid chain length increased the drug solubilization capacity (similarly to classical surfactants), due to the decreased CMC and bigger volume available for solubilization.<br>The hydrophilic head group also has a dramatic impact on the drug solubilization enhancement, with polar lipids performance decreasing in the order: choline phospholipids > monoglycerides > fatty acids.<br>As both the acyl chain length and the head group type are structural features of the polar lipids, and not of the solubilized drugs, the impact of <i>T</i><sub>m</sub> and CMC on solubilization by polar lipids should hold true for a wide variety of hydrophobic molecules. The obtained mechanistic insights can guide rational drug formulation development and thus support modern drug discovery pipelines.<br>


Author(s):  
D. Nagasamy Venkatesh ◽  
S. Karthick ◽  
M. Umesh ◽  
G. Vivek ◽  
R.M. Valliappan ◽  
...  

Roxythromycin/ β-cyclodextrin (Roxy/ β-CD) dispersions were prepared with a view to study the influence of β-CD on the solubility and dissolution rate of this poorly soluble drug. Phase-solubility profile indicated that the solubility of roxythromycin was significantly increased in the presence of β-cyclodextrin and was classified as AL-type, indicating the 1:1 stoichiometric inclusion complexes. Physical characterization of the prepared systems was carried out by differential scanning calorimetry (DSC), X-ray diffraction studies (XRD) and IR studies. Solid state characterization of the drug β-CD binary system using XRD, FTIR and DSC revealed distinct loss of drug crystallinity in the formulation, ostensibly accounting for enhancement of dissolution rate.


2008 ◽  
Vol 59 (6) ◽  
Author(s):  
Codruta Soica ◽  
Cristina A. Dehelean ◽  
Valentin Ordodi ◽  
Diana Antal ◽  
Vicentiu Vlaia

Birch bark contains important pentacyclic triterpens that determine an anticancer, anti-inflammatory and antiviral activity. The compounds can be extracted by simple procedures with organic solvents. The major problem of this type of triterpens is their low water solubility which can be increased by physical procedures like cyclodextrin complexation. The aim of present study was to analyse the products between birch bark extract and hydroxypropyl-g -cyclodextrin. Hydroxypropyl-g -cyclodextrin (HPGCD) was used as a host to improve its solubility in water, via inclusion complex formation. In order to obtain the inclusion complexes, 1:2 molar ratio and two preparation methods (physical mixing, kneading) were used. The inclusion complexes were analyzed by in vitro dissolution tests, thermal analysis and X-ray diffraction.


2018 ◽  
Vol 69 (7) ◽  
pp. 1838-1841
Author(s):  
Hajnal Kelemen ◽  
Angella Csillag ◽  
Bela Noszal ◽  
Gabor Orgovan

Ezetimibe, the antihyperlipidemic drug of poor bioavailability was complexed with native and derivatized cyclodextrins.The complexes were characterized in terms stability, stoichiometry and structure using various 1D and 2D solution NMR spectroscopic techniques. The complexes were found to be of moderate stability (logK[3). The least stable inclusion complex is formed with b-cyclodextrin, while the ezetimibe-methylated-b--cyclodextrin has a 7-fold higher stability. The results can be useful to improve the poor water-solubility and the concomitant bioavailability of ezetimibe.


Sign in / Sign up

Export Citation Format

Share Document