Balancing the Use of Wax-Based Warm Mix Additives for Improved Asphalt Compaction with Long-Term Pavement Performance

Author(s):  
Haibo Ding ◽  
Simon A. M. Hesp
2003 ◽  
Vol 1855 (1) ◽  
pp. 176-182 ◽  
Author(s):  
Weng On Tam ◽  
Harold Von Quintus

Traffic data are a key element for the design and analysis of pavement structures. Automatic vehicle-classification and weigh-in-motion (WIM) data are collected by most state highway agencies for various purposes that include pavement design. Equivalent single-axle loads have had widespread use for pavement design. However, procedures being developed under NCHRP require the use of axle-load spectra. The Long-Term Pavement Performance database contains a wealth of traffic data and was selected to develop traffic defaults in support of NCHRP 1-37A as well as other mechanistic-empirical design procedures. Automated vehicle-classification data were used to develop defaults that account for the distribution of truck volumes by class. Analyses also were conducted to determine direction and lane-distribution factors. WIM data were used to develop defaults to account for the axle-weight distributions and number of axles per vehicle for each truck type. The results of these analyses led to the establishment of traffic defaults for use in mechanistic-empirical design procedures.


Author(s):  
Biswajit K. Bairgi ◽  
A.S.M. Asifur Rahman ◽  
Rafiqul A. Tarefder ◽  
Matias M. Mendez Larrain

Warm-mix asphalt (WMA) technologies allow binder softening for compaction benefits. Lower production temperature also causes reduced short-term aging in WMA. Considering the long-term implication of the reduced aging and binder softening, WMA is being questioned about its rutting characteristics. As such, this study evaluates different WMA technologies for rutting characteristics in comparison to traditional hot-mix asphalt (HMA) through laboratory and field investigation. The study utilized the long-term pavement performance (LTPP) project in the state of New Mexico called Specific Pavement Study-10 (SPS-10), which was designed to evaluate the WMA performances. The LTPP SPS-10 section includes: (i) control HMA, (ii) foaming, (iii) Evotherm, (iv) Cecabase 1, and (v) Cecabase 2 mixtures. Cecabase 2 mixture consists of a polymer-modified binder (PG 70-28+), whereas other mixtures consist of PG 70-28 binder. The aggregate type, properties, and gradations are the same in all the sections. Laboratory evaluation of rutting was conducted through the Hamburg wheel tracking test. Long-term field rutting was evaluated through Mandli’s pavement profile scanner, a laser-based distress evaluation technology. The study found that WMA with foaming, Evotherm, or Cecabase shows slightly higher rutting compared with the control HMA; however, all the sections satisfied laboratory and field rutting criteria. The use of a polymer-modified binder in WMA significantly improves the rutting characteristics.


2020 ◽  
Vol 239 ◽  
pp. 117824 ◽  
Author(s):  
Haopeng Wang ◽  
Xueyan Liu ◽  
Martin van de Ven ◽  
Guoyang Lu ◽  
Sandra Erkens ◽  
...  

Author(s):  
T. F. Fwa ◽  
Thakur Swapna Rani

The seed moduli chosen for backcalculation analysis of multilayer flexible pavements can have significant impacts on the performance of backcalculation software and, sometimes, the final solutions of the backcalculated moduli. Practically all backcalculation programs provide internally generated seed moduli for backcalculation analysis. However, as the internally generated seed moduli do not always produce satisfactory results, the use of user-input seed moduli is generally encouraged. With the aim of providing useful guidance in the choice of seed moduli, a seed modulus generation algorithm, 2L-BACK, for multilayer flexible pavements based on a closed-form modulus backcalculation solution for two-layer flexible pavement structures was developed. The proposed algorithm does not require any subjective judgment by the user. An evaluation analysis of the effectiveness of the proposed procedure is presented by the use of two types of backcalculation software, MICHBACK and EVERCALC, and is based on measured and computed data for flexible pavement segments from the Long-Term Pavement Performance project. A comparison was made of the backcalculation program performance and the computed moduli of solutions obtained from internally generated seed moduli and those obtained from seed moduli generated by the proposed algorithm. It was found that the proposed seed modulus generation algorithm led to enhanced program performance of MICHBACK with respect to convergence characteristics and the accuracies of the backcalculated solutions. In comparison, the corresponding improvements for the case of EVERCALC were less. The proposed seed modulus generation algorithm does not suffer from the location and pavement type transferability constraints of most regression-based seed modulus generation methods. The results of the study suggest that the algorithm can be effectively incorporated into backcalculation software for multilayer flexible pavements.


Sign in / Sign up

Export Citation Format

Share Document