Organic/Inorganic Composite Membranes Based on Poly(l-lactic-co-glycolic acid) and Mesoporous Silica for Effective Bone Tissue Engineering

2014 ◽  
Vol 6 (23) ◽  
pp. 20895-20903 ◽  
Author(s):  
Panyu Zhou ◽  
Xiaosong Cheng ◽  
Yan Xia ◽  
Panfeng Wang ◽  
Kaidian Zou ◽  
...  
2017 ◽  
Vol 28 (16) ◽  
pp. 1966-1983 ◽  
Author(s):  
Yamina Boukari ◽  
Omar Qutachi ◽  
David J. Scurr ◽  
Andrew P. Morris ◽  
Stephen W. Doughty ◽  
...  

2008 ◽  
Vol 85A (3) ◽  
pp. 747-756 ◽  
Author(s):  
Sun-Woong Kang ◽  
Hee Seok Yang ◽  
Sang-Woo Seo ◽  
Dong Keun Han ◽  
Byung-Soo Kim

2021 ◽  
Vol 8 ◽  
Author(s):  
Sougata Ghosh ◽  
Thomas J. Webster

Porous nano-scaffolds provide for better opportunities to restore, maintain, and improve functions of damaged tissues and organs by facilitating tissue regeneration. Various nanohybrids composed of mesoporous silica nanoparticles (MSNs) are being widely explored for tissue engineering. Since biological activity is enhanced by several orders of magnitude in multicomponent scaffolds, remarkable progress has been observed in this field, which has aimed to develop the controlled synthesis of multifunctional MSNs with tuneable pore size, efficient delivering capacity of bioactive factors, as well as enhanced biocompatibility and biodegradability. In this review, we aim to provide a broad survey of the synthesis of multifunctional MSN based nanostructures with exotic shapes and sizes. Further, their promise as a novel nanomedicine is also elaborated with respect to their role in bone tissue engineering. Also, recent progress in surface modification and functionalization with various polymers like poly (l-lactic acid)/poly (ε-caprolactone), polylysine-modified polyethylenimine, poly (lactic-co-glycolic acid), and poly (citrate-siloxane) and biological polymers like alginate, chitosan, and gelatine are also covered. Several attempts for conjugating drugs like dexamethasone and β–estradiol, antibiotics like vancomycin and levofloxaci, and imaging agents like fluorescein isothiocyanate and gadolinium, on the surface modified MSNs are also covered. Finally, the scope of developing orthopaedic implants and potential trends in 3D bioprinting applications of MSNs are also discussed. Hence, MSNs based nanomaterials may serve as improved candidate biotemplates or scaffolds for numerous bone tissue engineering, drug delivery and imaging applications deserving our full attention now.


Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4397 ◽  
Author(s):  
Zhimin Xu ◽  
Ningning Wang ◽  
Peng Liu ◽  
Yidan Sun ◽  
Yumeng Wang ◽  
...  

Bone defects caused by osteoporosis, bone malignant tumors, and trauma are very common, but there are many limiting factors in the clinical treatment of them. Bone tissue engineering is the most promising treatment and is considered to be the main strategy for bone defect repair. We prepared polydopamine-coated poly-(lactic-co-glycolic acid)/β-tricalcium phosphate composite scaffolds via 3D printing, and a series of characterization and biocompatibility tests were carried out. The results show that the mechanical properties and pore-related parameters of the composite scaffolds are not affected by the coatings, and the hydrophilicities of the surface are obviously improved. Scanning electron microscopy and micro-computed tomography display the nanoscale microporous structure of the bio-materials. Biological tests demonstrate that this modified surface can promote cell adhesion and proliferation and improve osteogenesis through the increase of polydopamine (PDA) concentrations. Mouse cranial defect experiments are conducted to further verify the conclusion that scaffolds with a higher content of PDA coatings have a better effect on the formation of new bones. In the study, the objective of repairing critical-sized defects is achieved by simply adding PDA as coatings to obtain positive results, which can suggest that this modification method with PDA has great potential.


2017 ◽  
Vol 33 (2) ◽  
pp. 146-159 ◽  
Author(s):  
Mohammadreza Tahriri ◽  
Fathollah Moztarzadeh ◽  
Arash Tahriri ◽  
Hossein Eslami ◽  
Kimia Khoshroo ◽  
...  

The objective of this research was to study the degradation and biological characteristics of the three-dimensional porous composite scaffold made of poly(lactic- co-glycolic acid)/nano-fluorhydroxyapatite microsphere using sintering method for potential bone tissue engineering. Our previous experimental results demonstrated that poly(lactic- co-glycolic acid)/nano-fluorhydroxyapatite composite scaffold with a ratio of 4:1 sintered at 90ºC for 2 h has the greatest mechanical properties and a proper pore structure for bone repair applications. The weight loss percentage of both poly(lactic- co-glycolic acid)/nano-fluorhydroxyapatite and poly(lactic- co-glycolic acid) scaffolds demonstrated a monotonic trend with increasing degradation time, that is, the incorporation of nano-fluorhydroxyapatite into polymeric scaffold could lead to weight loss in comparison with that of pure poly(lactic- co-glycolic acid). The pH change for composite scaffolds showed that there was a slight decrease until 2 weeks after immersion in simulated body fluid, followed by a significant increase in the pH of simulated body fluid without a scaffold at the end of immersion time. The mechanical properties of composite scaffold were higher than that of poly(lactic- co-glycolic acid) scaffold at total time of incubation in simulated body fluid; however, it should be noted that the incorporation of nano-fluorhydroxyapatite into composite scaffold leads to decline in the relatively significant mechanical strength and modulus during hydrolytic degradation. In addition, MTT assay and alkaline phosphatase activity results defined that a general trend of increasing cell viability was seen for poly(lactic- co-glycolic acid)/nano-fluorhydroxyapatite scaffold sintered by time when compared to control group. Eventually, experimental results exhibited poly(lactic- co-glycolic acid)/nano-fluorhydroxyapatite microsphere-sintered scaffold is a promising scaffold for bone repair.


Sign in / Sign up

Export Citation Format

Share Document