Comparison of Adsorptive and Biological Total Organic Carbon Removal by Granular Activated Carbon in Potable Water Treatment

Author(s):  
S. W. MALONEY ◽  
K. BANCROFT ◽  
I. H. SUFFET ◽  
P. R. CAIRO
2004 ◽  
Vol 4 (4) ◽  
pp. 71-78 ◽  
Author(s):  
D.H. Metz ◽  
J. DeMarco ◽  
R. Pohlman ◽  
F.S. Cannon ◽  
B.C. Moore

The objective of this study was to compare the adsorption capabilities of the virgin carbon to the twelve and five times reactivated granular activated carbon (GAC). From a water treatment plant operator's perspective, there were very few practical differences in adsorption among the carbons tested for total organic carbon (TOC) and disinfection byproduct (DBP) precursors. However, some overall trends were observed. The GAC that was regenerated 5 times (R5) generally showed greater DBP precursor adsorption than the other GACs especially at the beginning of the runs. In some cases the carbon that was reactivated 12/13 times (R12 and R13) adsorbed slightly less DBP precursors than the other GACs especially in the latter part of the runs. The virgin (V) carbon performed better than the other GACs relative to DBP precursor removal in the latter part of the runs.


2009 ◽  
Vol 99 (6) ◽  
pp. 643-651 ◽  
Author(s):  
A. Olsen ◽  
B.S.C. Leadbeater ◽  
M.E. Callow ◽  
J.B. Holden ◽  
J.S. Bale

AbstractVarious sampling techniques were employed to study the population dynamics and identify the origin of annually re-occurring infestations of Paratanytarsus grimmii in granular activated carbon (GAC) adsorbers. Larvae overwintered in all adsorbers studied and are the main source of endemic persistent infestations. Significant differences in larval densities were identified between the down-flow cell (mean of 61 larvae per 0.3 l of GAC) and the up-flow cell (mean of 14 larvae per 0.3 l of GAC) of each adsorber. Larvae were distributed uniformly with no significant difference in density at any depth through the 2-m carbon column. Application of anaerobic treatment as a control measure was ineffective at low temperatures due to a slow down in chironomid metabolism. During summer months, ovipositing females have access to all locations within the GAC adsorber building by flight, leading to immediate re-colonisation of anaerobically-treated adsorbers. Regeneration of GAC in individual cells served only to reduce larval numbers but not remove them completely, particularly when only one of the two cells is regenerated at any one time.


Sign in / Sign up

Export Citation Format

Share Document