total organic carbon removal
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 9)

H-INDEX

9
(FIVE YEARS 3)

Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1452
Author(s):  
Alicia Levana Butt ◽  
John Kabangu Mpinga ◽  
Shepherd Masimba Tichapondwa

In this study, the viability of South African ilmenite sands as a catalyst in the photo-Fenton-like degradation of methyl orange (MO) dye was investigated. The mineralogy and other properties of the material were characterized. Complete decolorization occurred under acidic conditions (pH < 4) in the presence of ilmenite and H2O2. Light irradiation accelerated the rate of reaction. Parameter optimization revealed that a pH of 2.5, UVB irradiation, 2 g/L catalyst loading, and a hydrogen peroxide concentration of 1.0 mM were required. Under these conditions, complete decolorization was observed after 45 min. Degradation kinetics were best described by the pseudo-first order (PFO) model. Rate constants of 0.095 and 0.034 min−1 were obtained for 5 and 20 mg/L MO concentrations, respectively. A 37% total organic carbon removal was observed after 60 min. This suggests a stepwise MO degradation pathway with intermediate formation rather than complete mineralization. Although iron leaching was detected, the mineralogy of the catalyst recovered after the reaction was similar to the fresh catalyst.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2772
Author(s):  
Busisiwe N. Zwane ◽  
Benjamin O. Orimolade ◽  
Babatunde A. Koiki ◽  
Nonhlangabezo Mabuba ◽  
Chaimaa Gomri ◽  
...  

The mineralization of tetracycline by electrochemical advanced oxidation processes (EAOPs) as well as the study of the toxicity of its intermediates and degradation products are presented. Electro-Fenton (EF), anodic oxidation (AO), and electro-Fenton coupled with anodic oxidation (EF/AO) were used to degrade tetracycline on carbon felt (cathode) and a sub-stoichiometric titanium oxide (Ti4O7) layer deposited on Ti (anode). As compared to EF and AO, the coupled EF/AO system resulted in the highest pollutant removal efficiencies: total organic carbon removal was 69 ± 1% and 68 ± 1%, at 20 ppm and 50 ppm of initial concentration of tetracycline, respectively. The effect of electrolysis current on removal efficiency, mineralization current efficiency, energy consumption, and solution toxicity of tetracycline mineralization were investigated for 20 ppm and 50 ppm tetracycline. The EF/AO process using a Ti4O7 anode and CF cathode provides low energy and high removal efficiency of tetracycline caused by the production of hydroxyl radicals both at the surface of the non-active Ti4O7 electrode and in solution by the electro-Fenton process at the cathodic carbon felt. Complete removal of tetracycline was observed from HPLC data after 30 min at optimized conditions of 120 mA and 210 mA for 20 ppm and 50 ppm tetracycline concentrations. Degradation products were elucidated, and the toxicity of the products were measured with luminescence using Microtox® bacteria toxicity test.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ardak Makhatova ◽  
Gaukhar Ulykbanova ◽  
Shynggys Sadyk ◽  
Kali Sarsenbay ◽  
Timur Sh. Atabaev ◽  
...  

AbstractIn the present work, the photocatalytic degradation and mineralization of 4-tert-butylphenol in water was studied using Fe-doped TiO2 nanoparticles under UV light irradiation. Fe-doped TiO2 catalysts (0.5, 1, 2 and 4 wt.%) were prepared using wet impregnation and characterized via SEM/EDS, XRD, XRF and TEM, while their photocatalytic activity and stability was attended via total organic carbon, 4-tert-butyl phenol, acetic acid, formic acid and leached iron concentrations measurements. The effect of H2O2 addition was also examined. The 4% Fe/TiO2 demonstrated the highest photocatalytic efficiency in terms of total organic carbon removal (86%). The application of UV/H2O2 resulted in 31% total organic carbon removal and 100% 4-t-butylphenol conversion, however combining Fe/TiO2 catalysts with H2O2 under UV irradiation did not improve the photocatalytic performance. Increasing the content of iron on the catalyst from 0.5 to 4% considerably decreased the intermediates formed and increased the production of carbon dioxide. The photocatalytic degradation of 4-tert-butylphenol followed pseudo-second order kinetics. Leaching of iron was observed mainly in the case of 4% Fe/TiO2, but it was considered negligible taking into account the iron load on catalysts. The electric energy per order was found in the range of 28–147 kWh/m3/order and increased with increasing the iron content of the catalyst.


Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 222 ◽  
Author(s):  
Yongtao Xue ◽  
Zhansheng Wu ◽  
Xiufang He ◽  
Xia Yang ◽  
Xiaoqing Chen ◽  
...  

A well designed and accurate method of control of different shell thickness and electronic transmission in a Z-scheme core@shell system is conducive to obtaining an optimum photocatalytic performance. Herein, the Z-scheme heterojunction of egg-like core@shell CdS@TiO2photocatalysts with controlled shell thickness (13 nm, 15 nm, 17 nm, 22 nm) were synthesized by a facile reflux method, and the CdS@TiO2 structure was proved by a series of characterizations. The photodegradation ratio on methylene blue and tetracycline hydrochloride over the 0.10CdS@TiO2 composites with TiO2 shell thickness of 17 nm reached 90% in 250 min and 91% in 5 min, respectively, which was almost 9.8 times and 2.6 times than that of TiO2 and CdS on rhodamine B respectively under visible light. Besides, the higher total organic carbon removal ratio indicated that most of the pollutants were degraded to CO2 and H2O. The Z-scheme electronic transfer pathway was studied through radical species trapping experiments and electron spin resonance spectroscopy. Moreover, the relationship between shell thickness and photocatalytic activity demonstrated that different shell thickness affects the separation of the electron and holes, and therefore affected the photocatalytic performance. In addition, the effects of pollutants concentration, pH, and inorganic anions on photocatalytic performance were also investigated. This work can provide a novel idea for a well designed Z-scheme heterojunction of core@shell photocatalysts, and the study of photocatalytic performance under different factors has guiding significance for the treatment of actual wastewater.


2019 ◽  
Vol 9 (3) ◽  
pp. 472 ◽  
Author(s):  
Olga Sacco ◽  
Diana Sannino ◽  
Vincenzo Vaiano

A packed bed photoreactor was developed using a structured photocatalyst active under visible light. The packed bed reactor was irradiated by visible light-emitting diodes (LEDs) for the evaluation of photocatalytic activity in the removal of different types of water pollutants. By using a flexible LEDs strip as the external light source, it was possible to use a simple cylindrical geometry for the photoreactor, thereby enhancing the contact between the photocatalyst and the water to be treated. The visible light active structured photocatalyst was composed by N-doped TiO2 particles supported on polystyrene spheres. Photocatalytic results showed that the almost total methylene blue decolorization was achieved after 120 min of irradiation. Moreover, the developed packed bed photoreactor was effective in the removal of ceftriaxone, paracetamol, and caffeine, allowing it to reach the almost total degradation of the pollutants and a total organic carbon removal above 80% after 180 min of visible light irradiation.


Sign in / Sign up

Export Citation Format

Share Document