Aromatic-histidine interactions in the zinc finger motif: structural inequivalence of phenylalanine and tyrosine in the hydrophobic core. [Erratum to document cited in CA118(9):75682n]

Biochemistry ◽  
1993 ◽  
Vol 32 (14) ◽  
pp. 3829-3829
Author(s):  
Alan Jasanoff ◽  
Michael A. Weiss



1994 ◽  
Vol 91 (22) ◽  
pp. 10655-10659 ◽  
Author(s):  
R. Feuerstein ◽  
X. Wang ◽  
D. Song ◽  
N. E. Cooke ◽  
S. A. Liebhaber


Development ◽  
1997 ◽  
Vol 124 (21) ◽  
pp. 4321-4331 ◽  
Author(s):  
G. Begemann ◽  
N. Paricio ◽  
R. Artero ◽  
I. Kiss ◽  
M. Perez-Alonso ◽  
...  

We have isolated the embryonic lethal gene muscleblind (mbl) as a suppressor of the sev-svp2 eye phenotype. Analysis of clones mutant for mbl during eye development shows that it is autonomously required for photoreceptor differentiation. Mutant cells are recruited into developing ommatidia and initiate neural differentiation, but they fail to properly differentiate as photoreceptors. Molecular analysis reveals that the mbl locus is large and complex, giving rise to multiple different proteins with common 5′ sequences but different carboxy termini. Mbl proteins are nuclear and share a Cys3His zinc-finger motif which is also found in the TIS11/NUP475/TTP family of proteins and is highly conserved in vertebrates and invertebrates. Functional analysis of mbl, the observation that it also dominantly suppresses the sE-Jun(Asp) gain-of-function phenotype and the phenotypic similarity to mutants in the photoreceptor-specific glass gene suggest that mbl is a general factor required for photoreceptor differentiation.



Peptides 1992 ◽  
1993 ◽  
pp. 561-562 ◽  
Author(s):  
Susan F. Kobs-Conrad ◽  
Ann Marie DiGeorge ◽  
Hyosil Lee ◽  
Pravin T. P. Kaumaya


1997 ◽  
Vol 94 (4) ◽  
pp. 1177-1182 ◽  
Author(s):  
J. Tapia-Ramirez ◽  
B. J. L. Eggen ◽  
M. J. Peral-Rubio ◽  
J. J. Toledo-Aral ◽  
G. Mandel


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
S Shimizu ◽  
Y Sunagawa ◽  
K Hara ◽  
A Hishiki ◽  
Y Katanasaka ◽  
...  

Abstract Introduction Hypertrophic signals eventually reach the nuclei of cardiomyocytes, change patterns of gene expression, and cause the development of heart failure. During the development of heart failure, intrinsic histone acetyltransferase called p300 induce GATA4 acetylation. Acetylated GATA4 increases its DNA binding, up-regulates cardiac hypertrophic response genes, and lead to heart failure. A zinc finger protein, GATA4 is the transcription factor that expression level is high in heart. It has been reported that GATA1, the same GATA family, regulates transcriptional activity through its homo-dimerization. However, GATA4 homo-dimerization and its relationship to hypertrophic responses are still unknown. Purpose To clarify the relationship between GATA4 homo-dimerization and transcriptional activity and investigate whether inhibition of this homo-dimerization become therapeutic target for cardiac hypertrophy. Methods GST pull-down and DNA pull-down assay were performed using GST fusion full length and deletion mutants of GATA4 and biotin-conjugated ET-1 promoter probe including a GATA element. Recombinant C-zinc finger domain (256–326), including C-zinc finger motif (256–295) and acetylation site (308–326) was cross-linked using glutaraldehyde and subjected to silver staining. An expression plasmid with three GATA4-acetylation site mutant-conjugated with nuclear localization sequence (3xG4D) was constructed. Immunoprecipitation and western blotting were performed using nuclear extract from HEK293T cells expressing p300, GATA4, and 3xG4D. Luciferase assay was using ANF and ET-1 promoter sequences. Neonatal rat cultured cardiomyocyte expressed 3xG4D and then stimulated with phenylephrine (PE) for 48 hours. Next cardiomyocytes stained with α-actinin antibody and measured the cell surface area. Results The acetylation site of GATA4 was required for the dimerization of GATA4. But, C-zinc finger motif (256–295) and the acetylation site were required for the DNA binding. Recombinant C-zinc finger domain formed not only a homo-dimer but also a multimer. Co-expression of p300 increased the formation of homo-dimer as well as the acetylation of GATA4 in HEK293T cells. The GATA4 homo-dimer was disrupted by acetyl-deficient GATA4 or HAT-deficient p300 mutant. Overexpression of 3xG4D prevented the dimerization of GATA4, but not acetylation of GATA4. The result of luciferase assay showed that overexpression of 3xG4D prevented p300/GATA-induced ANF and ET-1 promoter activities. Furthermore, overexpression of 3xG4D inhibited phenylephrine-induced cardiomyocyte hypertrophy. Conclusions These results suggest that GATA4 dimerization may play an important role in hypertrophy-response gene activation. Thus, it is likely that inhabitation of GATA4 dimerization become therapeutic target for cardiac hypertrophy.



2009 ◽  
Vol 106 (17) ◽  
pp. 6933-6938 ◽  
Author(s):  
Ilaria Baglivo ◽  
Luigi Russo ◽  
Sabrina Esposito ◽  
Gaetano Malgieri ◽  
Mario Renda ◽  
...  

The recent characterization of the prokaryotic Cys2His2 zinc-finger domain, identified in Ros protein from Agrobacterium tumefaciens, has demonstrated that, although possessing a similar zinc coordination sphere, this domain is structurally very different from its eukaryotic counterpart. A search in the databases has identified ≈300 homologues with a high sequence identity to the Ros protein, including the amino acids that form the extensive hydrophobic core in Ros. Surprisingly, the Cys2His2 zinc coordination sphere is generally poorly conserved in the Ros homologues, raising the question of whether the zinc ion is always preserved in these proteins. Here, we present a functional and structural study of a point mutant of Ros protein, Ros56–142C82D, in which the second coordinating cysteine is replaced by an aspartate, 5 previously-uncharacterized representative Ros homologues from Mesorhizobium loti, and 2 mutants of the homologues. Our results indicate that the prokaryotic zinc-finger domain, which in Ros protein tetrahedrally coordinates Zn(II) through the typical Cys2His2 coordination, in Ros homologues can either exploit a CysAspHis2 coordination sphere, previously never described in DNA binding zinc finger domains to our knowledge, or lose the metal, while still preserving the DNA-binding activity. We demonstrate that this class of prokaryotic zinc-finger domains is structurally very adaptable, and surprisingly single mutations can transform a zinc-binding domain into a nonzinc-binding domain and vice versa, without affecting the DNA-binding ability. In light of our findings an evolutionary link between the prokaryotic and eukaryotic zinc-finger domains, based on bacteria-to-eukaryota horizontal gene transfer, is discussed.



2002 ◽  
Vol 76 (24) ◽  
pp. 13055-13061 ◽  
Author(s):  
Teresa Liu ◽  
Zhiping Ye

ABSTRACT The matrix protein (M1) of influenza virus plays an essential role in viral assembly and has a variety of functions, including association with influenza virus ribonucleoprotein (RNP). Our previous studies show that the association of M1 with viral RNA and nucleoprotein not only promotes formation of helical RNP but also is required for export of RNP from the nucleus during viral replication. The RNA-binding domains of M1 have been mapped to two independent regions: a zinc finger motif at amino acid positions 148 to 162 and a series of basic amino acids (RKLKR) at amino acid positions 101 to 105, which is also involved in RNP-binding activity. To further understand the role of the RNP-binding domain of M1 in viral assembly and replication, mutations in the coding sequences of RKLKR and the zinc finger motif of M1 were constructed using a PCR technique and introduced into wild-type influenza virus by reverse genetics. Altering the zinc finger motif of M1 only slightly affected viral growth. Substitution of Arg with Ser at position 101 or 105 of RKLKR did not have a major impact on nuclear export of RNP or viral replication. In contrast, deletion of RKLKR or substitution of Lys with Asn at position 102 or 104 of RKLKR resulted in a lethal mutation. These results indicate that the RKLKR domain of M1 protein plays an important role in viral replication.



Sign in / Sign up

Export Citation Format

Share Document