Identification of a Subunit Interface in Transthyretin Amyloid Fibrils:  Evidence for Self-Assembly from Oligomeric Building Blocks†

Biochemistry ◽  
2001 ◽  
Vol 40 (31) ◽  
pp. 9089-9096 ◽  
Author(s):  
Ahmed A. Serag ◽  
Christian Altenbach ◽  
Mari Gingery ◽  
Wayne L. Hubbell ◽  
Todd O. Yeates
2019 ◽  
Author(s):  
James D. Tang ◽  
Cameron Mura ◽  
Kyle J. Lampe

ABSTRACTShort peptides are uniquely versatile building blocks for self-assembly. Supramolecular peptide assemblies can be used to construct functional hydrogel biomaterials—an attractive approach for neural tissue engineering. Here, we report a new class of short, five-residue peptides that form hydrogels with nanofiber structures. Using rheology and spectroscopy, we describe how sequence variations, pH, and peptide concentration alter the mechanical properties of our pentapeptide hydrogels. We find that this class of seven unmodified peptides forms robust hydrogels from 0.2–20 kPa at low weight percent (less than 3 wt. %) in cell culture media, and undergoes shear-thinning and rapid self-healing. The peptides self-assemble into long fibrils with sequence-dependent fibrillar morphologies. These fibrils exhibit a unique twisted ribbon shape, as visualized by TEM and Cryo-EM imaging, with diameters in the low tens of nanometers and periodicities similar to amyloid fibrils. Experimental gelation behavior corroborates our molecular dynamics simulations, which demonstrate peptide assembly behavior, an increase in β-sheet content, and patterns of variation in solvent accessibility. Our Rapidly Assembling Pentapeptides for Injectable Delivery (RAPID) hydrogels are syringe-injectable and support cytocompatible encapsulation of oligodendrocyte progenitor cells (OPCs), as well as their proliferation and three-dimensional process extension. Furthermore, RAPID gels protect OPCs from mechanical membrane disruption and acute loss of viability when ejected from a syringe needle, highlighting the protective capability of the hydrogel as potential cell carriers for trans-plantation therapies. The tunable mechanical and structural properties of these supramolecular assemblies are shown to be permissive to cell expansion and remodeling, making this hydrogel system suitable as an injectable material for cell delivery and tissue engineering applications.


Author(s):  
Yizhaq Engelberg ◽  
Meytal Landau

Protein fibrils that perform biological activities present attractive biomaterials. Here we demonstrate, by crystal structures, the self-assembly of the antibacterial human LL-37 active core (residues 17-29) into a stable structure of densely packed helices. The surface of the fibril encompasses alternating hydrophobic and positively charged zigzagged belts, which likely underlie interactions with and subsequent disruption of negatively charged lipid bilayers, such as bacterial membranes. LL-3717-29 correspondingly formed wide, ribbon-like, thermostable fibrils in solution, which co-localized with bacterial cells, and structure-guided mutagenesis analyses supported the role of self-assembly in antibacterial activity. LL-3717-29 resembled, in sequence and in the ability to form amphipathic helical fibrils, the bacterial cytotoxic PSMα3 peptide that assembles into cross-α amyloid fibrils. This suggests helical, self-assembling, basic building blocks across kingdoms of life and point to potential structural mimicry mechanisms. The findings offer a scaffold for functional and durable nanostructures for a wide range of medical and technological applications.


2019 ◽  
Vol 26 (2) ◽  
pp. 88-97 ◽  
Author(s):  
Santu Bera ◽  
Ehud Gazit

The self-assembly of short peptide building blocks into well-ordered nanostructures is a key direction in bionanotechnology. The formation of β -sheet organizations by short peptides is well explored, leading to the development of a wide range of functional assemblies. Likewise, many natural proteinaceous materials, such as silk and amyloid fibrils, are based on β-sheet structures. In contrast, collagen, the most abundant protein in mammals, is based on helical arrangement. Similar to β-sheet structures, short helical peptides have been recently discovered to possess a diverse set of functionalities with the potential to fabricate artificial self-assembling materials. Here, we outline the functional roles of self-assembled nanostructures formed by short helical peptides and their potential as artificial materials. We focus on the association between self-assembled mesoscale structures and their material function and demonstrate the way by which this class of building blocks bears the potential for diverse applications, such as the future fabrication of smart devices.


2012 ◽  
Vol 9 (1) ◽  
pp. 43 ◽  
Author(s):  
Hueyling Tan

Molecular self-assembly is ubiquitous in nature and has emerged as a new approach to produce new materials in chemistry, engineering, nanotechnology, polymer science and materials. Molecular self-assembly has been attracting increasing interest from the scientific community in recent years due to its importance in understanding biology and a variety of diseases at the molecular level. In the last few years, considerable advances have been made in the use ofpeptides as building blocks to produce biological materials for wide range of applications, including fabricating novel supra-molecular structures and scaffolding for tissue repair. The study ofbiological self-assembly systems represents a significant advancement in molecular engineering and is a rapidly growing scientific and engineering field that crosses the boundaries ofexisting disciplines. Many self-assembling systems are rangefrom bi- andtri-block copolymers to DNA structures as well as simple and complex proteins andpeptides. The ultimate goal is to harness molecular self-assembly such that design andcontrol ofbottom-up processes is achieved thereby enabling exploitation of structures developed at the meso- and macro-scopic scale for the purposes oflife and non-life science applications. Such aspirations can be achievedthrough understanding thefundamental principles behind the selforganisation and self-synthesis processes exhibited by biological systems.


2018 ◽  
Author(s):  
Erik Leonhardt ◽  
Jeff M. Van Raden ◽  
David Miller ◽  
Lev N. Zakharov ◽  
Benjamin Aleman ◽  
...  

Extended carbon nanostructures, such as carbon nanotubes (CNTs), exhibit remarkable properties but are difficult to synthesize uniformly. Herein, we present a new class of carbon nanomaterials constructed via the bottom-up self-assembly of cylindrical, atomically-precise small molecules. Guided by supramolecular design principles and circle packing theory, we have designed and synthesized a fluorinated nanohoop that, in the solid-state, self-assembles into nanotube-like arrays with channel diameters of precisely 1.63 nm. A mild solution-casting technique is then used to construct vertical “forests” of these arrays on a highly-ordered pyrolytic graphite (HOPG) surface through epitaxial growth. Furthermore, we show that a basic property of nanohoops, fluorescence, is readily transferred to the bulk phase, implying that the properties of these materials can be directly altered via precise functionalization of their nanohoop building blocks. The strategy presented is expected to have broader applications in the development of new graphitic nanomaterials with π-rich cavities reminiscent of CNTs.


2017 ◽  
Author(s):  
Niamh Mac Fhionnlaoich ◽  
Stephen Schrettl ◽  
Nicholas B. Tito ◽  
Ye Yang ◽  
Malavika Nair ◽  
...  

The arrangement of nanoscale building blocks into patterns with microscale periodicity is challenging to achieve via self-assembly processes. Here, we report on the phase transition-driven collective assembly of gold nanoparticles in a thermotropic liquid crystal. A temperature-induced transition from the isotropic to the nematic phase leads to the assembly of individual nanometre-sized particles into arrays of micrometre-sized aggregates, whose size and characteristic spacing can be tuned by varying the cooling rate. This fully reversible process offers hierarchical control over structural order on the molecular, nanoscopic, and microscopic level and is an interesting model system for the programmable patterning of nanocomposites with access to micrometre-sized periodicities.


2021 ◽  
Author(s):  
Alexander Banger ◽  
Julian Sindram ◽  
Marius Otten ◽  
Jessica Kania ◽  
Alexander Strzelczyk ◽  
...  

We present the synthesis of so called amphiphilic glycomacromolecules (APGs) by using solid-phase polymer synthesis. Based on tailor made building blocks, monosdisperse APGs with varying compositions are synthesized, introducing carbohydrate...


2006 ◽  
pp. 4847-4849 ◽  
Author(s):  
Bulusu Jagannadh ◽  
Marepally Srinivasa Reddy ◽  
Chennamaneni Lohitha Rao ◽  
Anabathula Prabhakar ◽  
Bharatam Jagadeesh ◽  
...  

Soft Matter ◽  
2021 ◽  
Author(s):  
Jiawei Lu ◽  
Xiangyu Bu ◽  
Xinghua Zhang ◽  
Bing Liu

The shapes of colloidal particles are crucial to the self-assembled superstructures. Understanding the relationship between the shapes of building blocks and the resulting crystal structures is an important fundamental question....


2021 ◽  
Vol 57 (24) ◽  
pp. 3010-3013
Author(s):  
Ying-Ying Zhang ◽  
Feng-Yi Qiu ◽  
Hua-Tian Shi ◽  
Weibin Yu

Two triply interlocked [2]catenanes and one simple metallacage were constructed by tuning the widths of the organometallic dinuclear building blocks, and the interlocked architectures were disassembled by large aromatic molecules.


Sign in / Sign up

Export Citation Format

Share Document