Identification of the Structural and Functional Boundaries of the Multidrug Resistance Protein 1 Cytoplasmic Loop 3†

Biochemistry ◽  
2003 ◽  
Vol 42 (48) ◽  
pp. 14099-14113 ◽  
Author(s):  
Christopher J. Westlake ◽  
Yue-Ming Qian ◽  
Mian Gao ◽  
Monika Vasa ◽  
Susan P. C. Cole ◽  
...  
2021 ◽  
Vol 22 (18) ◽  
pp. 9710
Author(s):  
Gwenaëlle Conseil ◽  
Susan P. C. Cole

ABCC1 (human multidrug resistance protein 1 (hMRP1)) is an ATP-binding cassette transporter which effluxes xeno- and endobiotic organic anions and confers multidrug resistance through active drug efflux. The 17 transmembrane α-helices of hMRP1 are distributed among three membrane spanning domains (MSD0, 1, 2) with MSD1,2 each followed by a nucleotide binding domain to form the 4-domain core structure. Eight conserved residues in the first cytoplasmic loop (CL4) of MSD1 in the descending α-helix (Gly392, Tyr404, Arg405), the perpendicular coupling helix (Asn412, Arg415, Lys416), and the ascending α-helix (Glu422, Phe434) were targeted for mutagenesis. Mutants with both alanine and same charge substitutions of the coupling helix residues were expressed in HEK cells at wild-type hMRP1 levels and their transport activity was only moderately compromised. In contrast, mutants of the flanking amino acids (G392I, Y404A, R405A/K, E422A/D, and F434Y) were very poorly expressed although Y404F, E422D, and F434A were readily expressed and transport competent. Modeling analyses indicated that Glu422 and Arg615 could form an ion pair that might stabilize transporter expression. However, this was not supported by exchange mutations E422R/R615E which failed to improve hMRP1 levels. Additional structures accompanied by rigorous biochemical validations are needed to better understand the bonding interactions crucial for stable hMRP1 expression.


2000 ◽  
Vol 350 (2) ◽  
pp. 531-535 ◽  
Author(s):  
David W. C. DEKKERS ◽  
Paul COMFURIUS ◽  
Rein G. J. VAN GOOL ◽  
Edouard M. BEVERS ◽  
Robert F. A. ZWAAL

The role of multidrug resistance protein 1 (MRP1) in the maintenance of transbilayer lipid asymmetry in the erythrocyte membrane was investigated. The transbilayer distribution of endogenous phospholipids and [(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]hexanoyl (NBD)-labelled lipid analogues was compared in the absence and the presence of inhibitors of MRP1. At equilibrium the transbilayer distribution of the NBD analogues (in the absence of MRP1 inhibitors) was very similar to that of the endogenous lipids. Inhibition of MRP1 by verapamil or indomethacin resulted in a shift in the amount of probe that was internalized: approx. 50% of NBD-labelled phosphatidylcholine (PtdCho) and 9% of NBD-sphingomyelin (NBD-Spm) were no longer extractable by BSA in cells treated with inhibitor, in comparison with 25% and 3% for control cells respectively. To verify whether inhibition of MRP1 also affected the distribution of the endogenous phospholipids, phospholipase A2 and sphingomyelinase were used to assess the amount of each of the various lipid classes present in the membrane outer leaflet. No shift in phospholipid distribution was observed after 5h of incubation with verapamil or indomethacin. However, after 48h of incubation with these inhibitors, significantly smaller amounts of PtdCho and Spm were present in the outer membrane leaflet. No appreciable change was observed in the distribution of phosphatidylethanolamine or phosphatidylserine. Decreased hydrolysis of PtdCho and Spm was not due to endovesicle formation, as revealed by electron microscopy. This is the first report to show that MRP1 has a role in the maintenance of the outwards orientation of endogenous choline-containing phospholipids in the erythrocyte membrane.


mBio ◽  
2020 ◽  
Vol 11 (6) ◽  
Author(s):  
Carla Calçada ◽  
Miguel Silva ◽  
Vitória Baptista ◽  
Vandana Thathy ◽  
Rita Silva-Pedrosa ◽  
...  

ABSTRACT Artemisinin-based combination therapies (ACTs) have been vital in reducing malaria mortality rates since the 2000s. Their efficacy, however, is threatened by the emergence and spread of artemisinin resistance in Southeast Asia. The Plasmodium falciparum multidrug resistance protein 1 (PfMDR1) transporter plays a central role in parasite resistance to ACT partner drugs through gene copy number variations (CNV) and/or single nucleotide polymorphisms (SNPs). Using genomic epidemiology, we show that multiple pfmdr1 copies encoding the N86 and 184F haplotype are prevalent across Southeast Asia. Applying genome editing tools on the Southeast Asian Dd2 strain and using a surrogate assay to measure transporter activity in infected red blood cells, we demonstrate that parasites harboring multicopy N86/184F PfMDR1 have a higher Fluo-4 transport capacity compared with those expressing the wild-type N86/Y184 haplotype. Multicopy N86/184F PfMDR1 is also associated with decreased parasite susceptibility to lumefantrine. These findings provide evidence of the geographic selection and expansion of specific multicopy PfMDR1 haplotypes associated with multidrug resistance in Southeast Asia. IMPORTANCE Global efforts to eliminate malaria depend on the continued success of artemisinin-based combination therapies (ACTs) that target Plasmodium asexual blood-stage parasites. Resistance to ACTs, however, has emerged, creating the need to define the underlying mechanisms. Mutations in the P. falciparum multidrug resistance protein 1 (PfMDR1) transporter constitute an important determinant of resistance. Applying gene editing tools combined with an analysis of a public database containing thousands of parasite genomes, we show geographic selection and expansion of a pfmdr1 gene amplification encoding the N86/184F haplotype in Southeast Asia. Parasites expressing this PfMDR1 variant possess a higher transport capacity that modulates their responses to antimalarials. These data could help tailor and optimize antimalarial drug usage in different regions where malaria is endemic by taking into account the regional prevalence of pfmdr1 polymorphisms.


Sign in / Sign up

Export Citation Format

Share Document