phospholipid distribution
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 6)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Hugo Bisio ◽  
Aarti Krishnan ◽  
Jean-Baptiste Marq ◽  
Dominique Soldati-Favre

Regulated microneme secretion governs motility, host cell invasion and egress in the obligate intracellular apicomplexans. Intracellular calcium oscillations and phospholipid dynamics critically regulate micronemes exocytosis. Despite its importance for the lytic cycle of these parasites, molecular mechanistic details about exocytosis are still missing. Some members of the P4-ATPases act as flippases, changing the phospholipid distribution by translocation from the outer to the inner leaflet of the membrane. Here, the localization and function of the repertoire of P4-ATPases was investigated across the lytic cycle of Toxoplasma gondii. Of relevance, ATP2B and the non-catalytic subunit cell division control protein 50.4 (CDC50.4) form a stable heterocomplex at the parasite plasma membrane, essential for microneme exocytosis. This complex is responsible for flipping phosphatidylserine (PS), which presumably acts as a lipid mediator for the organelle fusion with the plasma membrane. DOC2.1, a previously described key egress and invasion factor, is shown here to be affected in its function in egress upon mutation on residues putatively involved in calcium binding. This study points toward the importance of PS in microneme exocytosis and unveils subtle differences in the signaling cascades leading to organelle secretion between intracellular and extracellular parasites to ensure egress and invasion, respectively.


2020 ◽  
Author(s):  
Yong Wang ◽  
Joseph A Lyons ◽  
Milena Timcenko ◽  
Bert L. de Groot ◽  
Poul Nissen ◽  
...  

AbstractType-IV P-type ATPases are lipid flippases which help maintain asymmetric phospholipid distribution in eukaryotic membranes by using ATP hydrolysis to drive unidirectional translocation of phospholipid substrates. Recent Cryo-EM and crystal structures have provided a detailed view of flippases, and we here use molecular dynamics simulations of the yeast flippase Drs2p:Cdc50p in an outward open conformation to study the first steps of phospholipid transport. Our simulations show phospholipid binding to a groove and subsequent movement towards the centre of the membrane, and reveal a preference for phosphatidylserine lipids. We find that the lipid head group stays solvated in the groove while the lipid tails stay in the membrane during the (half) transport event. The flippase also induces deformation and thinning of the outer leaflet. Together, our simulations provide insight into substrate binding to lipid flippases and suggest that multiple sites and steps in the functional cycle contribute to substrate selectivity.


2020 ◽  
Author(s):  
Anaïs Lamy ◽  
Ewerton Macarini-Bruzaferro ◽  
Alex Perálvarez-Marín ◽  
Marc le Maire ◽  
José Luis Vázquez-Ibar

ABSTRACTEfficient mechanisms of lipid transport are indispensable for the Plasmodium malaria parasite along the different stages of its intracellular life-cycle. Gene targeting approaches have recently revealed the irreplaceable role of the Plasmodium-encoded type 4 P-type ATPases (P4-ATPases or lipid flippases), ATP2, together with its potential involvement as antimalarial drug target. In eukaryotic membranes, P4-ATPases assure their asymmetric phospholipid distribution by translocating phospholipids from the outer to the inner leaflet. As ATP2 is a yet putative transporter, in this work we have used a recombinantly-produced P. chabaudi ATP2, PcATP2, to gain insights into the function and structural organization of this essential transporter. Our work demonstrates that PcATP2 heterodimerizes with two of the three Plasmodium-encoded Cdc50 proteins: PcCdc50B and PcCdc50A, indispensable partners for most P4-ATPases. Moreover, the purified PcATP2/PcCdc50B complex catalyses ATP hydrolysis in the presence of phospholipids containing either phosphatidylserine, phosphatidylethanolamine or phosphatidylcholine head groups, and that this activity is upregulated by phosphatidylinositol 4-phosphate. Overall, our work provides the first study of the function and quaternary organization of ATP2, a promising antimalarial drug target candidate.


2020 ◽  
Vol 6 (23) ◽  
pp. eaaz6333 ◽  
Author(s):  
Mikhail Bogdanov ◽  
Kyrylo Pyrshev ◽  
Semen Yesylevskyy ◽  
Sergey Ryabichko ◽  
Vitalii Boiko ◽  
...  

The distribution of phospholipids across the inner membrane (IM) of Gram-negative bacteria is unknown. We demonstrate that the IMs of Escherichia coli and Yersinia pseudotuberculosis are asymmetric, with a 75%/25% (cytoplasmic/periplasmic leaflet) distribution of phosphatidylethanolamine (PE) in rod-shaped cells and an opposite distribution in E. coli filamentous cells. In initially filamentous PE-lacking E. coli cells, nascent PE appears first in the periplasmic leaflet. As the total PE content increases from nearly zero to 75%, cells progressively adopt a rod shape and PE appears in the cytoplasmic leaflet of the IM. The redistribution of PE influences the distribution of the other lipids between the leaflets. This correlates with the tendency of PE and cardiolipin to regulate antagonistically lipid order of the bilayer. The results suggest that PE asymmetry is metabolically controlled to balance temporally the net rates of synthesis and translocation, satisfy envelope growth capacity, and adjust bilayer chemical and physical properties.


2020 ◽  
Author(s):  
Andrew Booth ◽  
Christopher J. Marklew ◽  
Barbara Ciani ◽  
Paul A. Beales

AbstractThe endosomal sorting complex required for transport (ESCRT) organises in supramolecular structures on the surface of lipid bilayers to drive membrane invagination and scission of intraluminal vesicles (ILVs), a process also controlled by membrane mechanics. However, ESCRT association with the membrane is also mediated by electrostatic interactions with anionic phospholipids. Phospholipid distribution within natural biomembranes is inhomogeneous due to, for example, the formation of lipid rafts and curvature-driven lipid sorting. Here, we have used phase-separated giant unilamellar vesicles (GUVs) to investigate the link between phosphatidylserine (PS)-rich lipid domains and ESCRT activity. We employ GUVs composed of phase separating lipid mixtures, where unsaturated DOPS and saturated DPPS lipids are incorporated individually or simultaneously to enhance PS localisation in liquid disordered (Ld) and/or liquid ordered (Lo) domains, respectively. PS partitioning between the coexisting phases is confirmed by a fluorescent Annexin V probe. Ultimately, we find that ILV generation promoted by ESCRTs is significantly enhanced when PS lipids localise within Ld domains. However, the ILVs that form are rich in Lo lipids. We interpret this surprising observation as preferential recruitment of the Lo phase beneath the ESCRT complex due to its increased rigidity, where the Ld phase is favoured in the neck of the resultant buds to facilitate the high membrane curvature in these regions of the membrane during the ILV formation process. Ld domains offer lower resistance to membrane bending, demonstrating a mechanism by which the composition and mechanics of membranes can be coupled to regulate the location and efficiency of ESCRT activity.


2020 ◽  
Vol 60 (3) ◽  
pp. 162-164
Author(s):  
Takuma TSUJI ◽  
Toyoshi FUJIMOTO

2016 ◽  
Vol 67 (4) ◽  
pp. 168 ◽  
Author(s):  
R. C. Reddy Jala ◽  
B. Chen ◽  
H. Li ◽  
Y. Zhang ◽  
L-Z Cheong ◽  
...  

Simple enzymatic methods were developed for the synthesis of lysolecithin, glycerolyzed lecithin and hydrolyzed lecithin. The products were characterized in terms of their acetone insoluble matter, hexane insoluble matter, moisture, phospholipid distribution and fatty acid composition. The HLB value ranges of different products with different acid values were detected. The efficiency of optimally hydrolyzed lecithin was examined at high calcium ion, low pH, and aqueous solutions and compared with commercially available standard lecithin-based emulsifiers. Overall, lysolecithin powder was proven to be the best emulsifier even at strong and medium acidic conditions.


2014 ◽  
Vol 83 (2) ◽  
pp. 189-193
Author(s):  
Magda Konkolewska ◽  
Szczepan Kurc ◽  
Ewa Stępień

Microparticles (MPs) are membrane vesicles of 0.1–1 µm in diameter produced mainly by platelets, vascular endothelium and blood cells in response to cell activation and stress factors. MPs can be also released during malignant transformation or apoptosis. The essential step in MP formation is the loss of the cell membrane asymmetric phospholipid distribution as response to the increased intracellular calcium levels. MPs contain, proteins and genetic material (DNA, miRNA, mRNA) which enables them to interact and influence target cell. MPs are considered to be markers of ongoing pathophysiological processes in cardiovascular system, due to their role in inflammation and coagulation.


Sign in / Sign up

Export Citation Format

Share Document