Sequential Ordered Fatty Acid α Oxidation and Δ9 Desaturation Are Major Determinants of Lipid Storage and Utilization in Differentiating Adipocytes†

Biochemistry ◽  
2004 ◽  
Vol 43 (17) ◽  
pp. 5033-5044 ◽  
Author(s):  
Xiong Su ◽  
Xianlin Han ◽  
Jingyue Yang ◽  
David J. Mancuso ◽  
Jeannie Chen ◽  
...  
Keyword(s):  
Metabolism ◽  
2019 ◽  
Vol 96 ◽  
pp. 12-21 ◽  
Author(s):  
Ricardo Rodríguez-Calvo ◽  
Josefa Girona ◽  
Marina Rodríguez ◽  
Sara Samino ◽  
Emma Barroso ◽  
...  

Author(s):  
Katie L Bidne ◽  
Alana L Rister ◽  
Andrea R McCain ◽  
Brianna D Hitt ◽  
Eric D Dodds ◽  
...  

Abstract Dyslipidemia is a characteristic of maternal obesity and previous studies have demonstrated abnormalities in fatty acid oxidation and storage in term placentas. However, there is little information about the effect of pre-pregnancy obesity on placental lipid metabolism during early pregnancy. The objective of this study was to determine the relationship between lipid profiles and markers of metabolism in placentas from obese and lean dams at midgestation. Mice were fed a western diet (WD) or normal diet (ND) and lysophosphatidylcholines (LPCs) and/or phosphatidylcholines (PCs) were measured in dam circulation and placenta sections using liquid chromatography–tandem mass spectrometry and mass spectrometry imaging, respectively. In WD dam, circulating LPCs containing 16:1, 18:1, 20:0, and 20:3 fatty acids were increased and 18:2 and 20:4 were decreased. In WD placenta from both sexes, LPC 18:1 and PC 36:1 and 38:3 were increased. Furthermore, there were moderate to strong correlations between LPC 18:1, PC 36:1, and PC 38:3. Treatment-, spatial-, and sex-dependent differences in LPC 20:1 and 20:3 were also detected. To identify genes that may regulate diet-dependent differences in placenta lipid profiles, the expression of genes associated with lipid metabolism and nutrient transport was measured in whole placenta and isolated labyrinth using droplet digital PCR and Nanostring nCounter assays. Several apolipoproteins were increased in WD placentas. However, no differences in nutrient transport or fatty acid metabolism were detected. Together, these data indicate that lipid storage is increased in midgestation WD placentas, which may lead to lipotoxicity, altered lipid metabolism and transport to the fetus later in gestation.


Endocrinology ◽  
2013 ◽  
Vol 154 (11) ◽  
pp. 4126-4135 ◽  
Author(s):  
Oleg Varlamov ◽  
Michael P. Chu ◽  
Whitney K. McGee ◽  
Judy L. Cameron ◽  
Robert W. O'Rourke ◽  
...  

Previous studies in rodents and humans suggest that hyperandrogenemia causes white adipose tissue (WAT) dysfunction in females, although the underlying mechanisms are poorly understood. In light of the differences in the length of the ovarian cycle between humans and rodents, we used a nonhuman primate model to elucidate the effects of chronic hyperandrogenemia on WAT function in vivo. Female rhesus macaques implanted with testosterone capsules developed insulin resistance and altered leptin secretion on a high-fat, Western-style diet. In control visceral WAT, lipolysis and hormone-sensitive lipase expression were upregulated during the luteal phase compared with the early follicular (menses) phase of the ovarian cycle. Hyperandrogenemia attenuated elevated lipolysis and hormone-sensitive lipase activity in visceral WAT during the luteal phase but not during menses. Under control conditions, insulin-stimulated Akt and Erk activation and fatty acid uptake in WAT were not significantly affected by the ovarian cycle. In contrast, testosterone treatment preferentially increased fatty acid uptake and insulin signaling at menses. The fatty acid synthase and glucose transporter-4 genes were upregulated by testosterone during the luteal phase. In summary, this study reveals ovarian stage-specific fluctuations in adipocyte lipolysis and suggests that male sex hormones increase and female sex hormones decrease lipid storage in female WAT.


2011 ◽  
Vol 286 (27) ◽  
pp. 24101-24112 ◽  
Author(s):  
Atsushi Ohnishi ◽  
J. Joe Hull ◽  
Misato Kaji ◽  
Kana Hashimoto ◽  
Jae Min Lee ◽  
...  

Species-specific sex pheromones released by female moths to attract conspecific male moths are synthesized de novo in the pheromone gland (PG) via the fatty acid biosynthetic pathway. This pathway is regulated by a neurohormone termed pheromone biosynthesis activating neuropeptide (PBAN), a 33-amino acid peptide that originates in the subesophageal ganglion. In the silkmoth, Bombyx mori, cytoplasmic lipid droplets, which store the sex pheromone (bombykol) precursor fatty acid, accumulate in PG cells. PBAN stimulates lipolysis of the stored lipid droplet triacylglycerols (TAGs) and releases the precursor for final modification. PBAN exerts its physiological function via the PG cell-surface PBAN receptor, a G protein-coupled receptor that belongs to the neuromedin U receptor family. The PBAN receptor-mediated signal is transmitted via a canonical store-operated channel activation pathway utilizing Gq-mediated phospholipase C activation (Hull, J. J., Kajigaya, R., Imai, K., and Matsumoto, S. (2007) Biosci. Biotechnol. Biochem. 71, 1993–2001; Hull, J. J., Lee, J. M., Kajigaya, R., and Matsumoto, S. (2009) J. Biol. Chem. 284, 31200–31213; Hull, J. J., Lee, J. M., and Matsumoto, S. (2010) Insect Mol. Biol. 19, 553–566). Little, however, is known about the molecular components regulating TAG lipolysis in PG cells. In the current study we found that PBAN signaling involves phosphorylation of an insect PAT family protein named B. mori lipid storage droplet protein-1 (BmLsd1) and that BmLsd1 plays an essential role in the TAG lipolysis associated with bombykol production. Unlike mammalian PAT family perilipins, however, BmLsd1 activation is dependent on phosphorylation by B. mori Ca2+/calmodulin-dependent protein kinase II rather than protein kinase A.


2013 ◽  
Vol 88 (6) ◽  
pp. 164-164 ◽  
Author(s):  
H. Aardema ◽  
F. Lolicato ◽  
C. H. A. van de Lest ◽  
J. F. Brouwers ◽  
A. B. Vaandrager ◽  
...  

1990 ◽  
Vol 98 (1-2) ◽  
Author(s):  
Lodovica Vergani ◽  
Marina Fanin ◽  
Andrea Martinuzzi ◽  
Andrea Galassi ◽  
Andrea Appi ◽  
...  

1990 ◽  
Vol 269 (1) ◽  
pp. 107-113 ◽  
Author(s):  
J Radom ◽  
R Salvayre ◽  
T Levade ◽  
L Douste-Blazy

The uptake and intracellular metabolism of 4-(1-pyrene)butanoic acid (P4), 10-(1-pyrene)decanoic acid (P10) and 12-(1-pyrene)dodecanoic acid (P12) were investigated in cultured lymphoid cell lines from normal individuals and from a patient with multisystemic lipid storage myopathy (MLSM). The cellular uptake was shown to be dependent on the fatty-acid chain length, but no significant difference in the uptake of pyrene fatty acids was observed between MLSM and control lymphoid cells. After incubation for 1 h the distribution of fluorescent fatty acids taken up by the lymphoid cell lines also differed with the chain length, most of the fluorescence being associated with phospholipid and triacylglycerols. In contrast with P10 and P12, P4 was not incorporated into neutral lipids. When the cells were incubated for 24 h with the pyrene fatty acids, the amount of fluorescent lipids synthesized by the cells was proportional to the fatty acid concentration in the culture medium. After a 24 h incubation in the presence of P10 or P12, at any concentration, the fluorescent triacylglycerol content of MLSM cells was 2-5-fold higher than that of control cells. Concentrations of pyrene fatty acids higher than 40 microM seemed to be more toxic for mutant cells than for control cells. This cytotoxicity was dependent on the fluorescent-fatty-acid chain length (P12 greater than P10 greater than P4). Pulse-chase experiments permitted one to demonstrate the defect in the degradation of endogenously biosynthesized triacylglycerols in MLSM cells (residual activity was around 10-25% of controls on the basis of half-lives and initial rates of P10- or P12-labelled-triacylglycerol catabolism); MLSM lymphoid cells exhibited a mild phenotypic expression of the lipid storage (less severe than that observed in fibroblasts). P4 was not utilized in the synthesis of triacylglycerols, and thus did not accumulate in MLSM cells: this suggests that natural short-chain fatty acids might induce a lesser lipid storage in this disease.


2018 ◽  
Vol 13 (3) ◽  
pp. 362 ◽  
Author(s):  
SadanandavalliR Chandra ◽  
Rita Christopher ◽  
Gayathri Narayanappa ◽  
NitinC Ramanujam ◽  
Pavan Katragadda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document