Identification of Ligand Binding Regions of theSaccharomyces cerevisiaeα-Factor Pheromone Receptor by Photoaffinity Cross-Linking†

Biochemistry ◽  
2004 ◽  
Vol 43 (41) ◽  
pp. 13193-13203 ◽  
Author(s):  
Cagdas D. Son ◽  
Hasmik Sargsyan ◽  
Fred Naider ◽  
Jeffrey M. Becker
Author(s):  
Jon Erickson ◽  
Richard Posner ◽  
Byron Goldstein ◽  
David Holowka ◽  
Barbara Baird

1991 ◽  
Vol 277 (1) ◽  
pp. 67-72 ◽  
Author(s):  
J J Remes ◽  
U E Petäjä-Repo ◽  
H J Rajaniemi

Rat and human neutrophil N-formyl-peptide chemotactic receptors were subjected to glycosidase and proteinase treatments to determine the extent and species differences of glycosylation and the carbohydrate requirement in the high-affinity ligand binding. N-Formyl-Nle-Leu-Phe-Nle-125I-Tyr-Lys was attached to rat and human neutrophils either before or after glycosidase and proteinase treatments, and the labelled receptors were solubilized after glutaraldehyde cross-linking and analysed by SDS/PAGE and autoradiography. Both the rat and human N-formyl-peptide chemotactic receptors contain only N-linked oligosaccharides, as demonstrated by their sensitivity to peptide N-glycosidase F (PNGase F) and resistance to O-glycanase treatment. The N-linked oligosaccharides seem to be of the complex type rather than the high-mannose or hybrid type and lack terminal sialic acid, as demonstrated by their resistance to endoglycosidases D and H and neuraminidase treatments. This sensitivity pattern was similar in both species, and the shift in the molecular size of the receptors to 35-38 kDa after PNGase F treatment occurred through one intermediate product, suggesting that both receptors contain a similar 35-38 kDa polypeptide core with two N-linked complex-type oligosaccharides, the heterogeneity of which is responsible for the species difference in receptor size. Papain treatment alone or followed by PNGase F produced in both species a 33-36 kDa membrane-bound fragment that was still able to bind the ligand, suggesting that the oligosaccharides are located on the approx. 2 kDa papain-cleavable polypeptide fragment of the receptors. The cleavage sites for both papain and PNGase F were hidden in occupied receptors, suggesting a conformational or topographical change in these upon ligand binding. Scatchard analyses and cross-linking experiments demonstrated that carbohydrates are not required for high-affinity ligand binding and that the 33-36 kDa membrane-bound papain fragment of both receptors contains the ligand-binding site.


2010 ◽  
Vol 12 (11) ◽  
pp. 2873-2884 ◽  
Author(s):  
Jesús Lacal ◽  
Cristina García-Fontana ◽  
Francisco Muñoz-Martínez ◽  
Juan-Luis Ramos ◽  
Tino Krell

2015 ◽  
Vol 112 (35) ◽  
pp. 11042-11047 ◽  
Author(s):  
Christian Monzel ◽  
Gottfried Unden

The C4-dicarboxylate sensor kinase DcuS is membrane integral because of the transmembrane (TM) helices TM1 and TM2. Fumarate-induced movement of the helices was probed in vivo by Cys accessibility scanning at the membrane–water interfaces after activation of DcuS by fumarate at the periplasmic binding site. TM1 was inserted with amino acid residues 21–41 in the membrane in both the fumarate-activated (ON) and inactive (OFF) states. In contrast, TM2 was inserted with residues 181–201 in the OFF state and residues 185–205 in the ON state. Replacement of Trp 185 by an Arg residue caused displacement of TM2 toward the outside of the membrane and a concomitant induction of the ON state. Results from Cys cross-linking of TM2/TM2′ in the DcuS homodimer excluded rotation; thus, data from accessibility changes of TM2 upon activation, either by ligand binding or by mutation of TM2, and cross-linking of TM2 and the connected region in the periplasm suggest a piston-type shift of TM2 by four residues to the periplasm upon activation (or fumarate binding). This mode of function is supported by the suggestion from energetic calculations of two preferred positions for TM2 insertion in the membrane. The shift of TM2 by four residues (or 4–6 Å) toward the periplasm upon activation is complementary to the periplasmic displacement of 3–4 Å of the C-terminal part of the periplasmic ligand-binding domain upon ligand occupancy in the citrate-binding domain in the homologous CitA sensor kinase.


2014 ◽  
Vol 452 (4) ◽  
pp. 980-985 ◽  
Author(s):  
Ken-ichi Aoyama ◽  
Yoshihide Ota ◽  
Kagemasa Kajiwara ◽  
Noriaki Hirayama ◽  
Minoru Kimura

Sign in / Sign up

Export Citation Format

Share Document