species difference
Recently Published Documents


TOTAL DOCUMENTS

509
(FIVE YEARS 60)

H-INDEX

46
(FIVE YEARS 3)

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Dongxue Zhang ◽  
Wenyan Liu ◽  
Li Peng ◽  
Haiyan Wang ◽  
Mei Lin ◽  
...  

Abstract Background To investigate the difference in the structural composition of salivary flora between chronic periodontitis patients with and without diabetic nephropathy (DN). Methods Thirty salivary samples of 15 chronic periodontitis patients with DN (DN group) and 15 chronic periodontitis patients with diabetes but without DN (DM group) were subjected to pyrosequencing of polymerase chain reaction-amplified 16 s ribosomal RNA genes. After diversity testing, the differential flora were analyzed. The sequencing results were compared with GenBank database to determine the type of differential flora using species composition analysis, hierarchical cluster analysis, principal co-ordinate analysis, and species difference analysis. Results There were significant between-group differences with respect to Gemella, Selenomonas spp, Lactobacillales_unclassified, Bacteria-unclassified and Abiotrophia (p < 0.05). Compared with DM group, the relative abundance of Selenomonas spp. in DN group was significantly higher; the area under the receiver operating characteristic curve of Selenomonas spp. was 0.713 (P < 0.05). Multi-level biological identification and feature maps indicated that Selenomonas spp. might be used as a potential biomarker for DN patients. On binary logistic regression analysis, increase of Selenomonas spp. was related with DN. Conclusions We found significant between-group differences in the structural composition of oral flora. The increase in the relative abundance of Selenomonas spp. may be associated with DN in patients with chronic periodontitis.


Author(s):  
Saumya Gupta ◽  
Rishi K. Alluri ◽  
Gary J. Rose ◽  
Mark A. Bee

Sexual traits that promote species recognition are important drivers of reproductive isolation, especially among closely related species. Identifying neural processes that shape species differences in recognition is crucial for understanding the causal mechanisms of reproductive isolation. Temporal patterns are salient features of sexual signals widely used in species recognition by several taxa, including anurans. Recent advances in our understanding of temporal processing by the anuran auditory system provide an opportunity to investigate the neural basis of species-specific recognition. The anuran inferior colliculus (IC) consists of neurons that are selective for temporal features of calls. Of potential relevance are auditory neurons known as interval-counting neurons (ICNs) that are often selective for the pulse rate of conspecific advertisement calls. Here, we tested the hypothesis that ICNs mediate acoustic species recognition by exploiting the known differences in temporal selectivity in two cryptic species of gray treefrog (Hyla chrysoscelis and Hyla versicolor). We examined the extent to which the threshold number of pulses required to elicit behavioral responses from females and neural responses from ICNs was similar within each species but potentially different between the two species. In support of our hypothesis, we found that a species difference in behavioral pulse number thresholds closely matched the species difference in neural pulse number thresholds. However, this relationship held only for ICNs that exhibited band-pass tuning for conspecific pulse rates. Together, these findings suggest that differences in temporal processing of a subset of ICNs provide a mechanistic explanation for reproductive isolation between two cryptic treefrog species.


2021 ◽  
Author(s):  
Nikoloz Sirmpilatze ◽  
Judith Mylius ◽  
Michael Ortiz-Rios ◽  
Jürgen Baudewig ◽  
Jaakko Paasonen ◽  
...  

During deep anesthesia, the electroencephalographic (EEG) signal of the brain alternates between bursts of activity and periods of relative silence (suppressions). The origin of burst-suppression and its distribution across the brain remain matters of debate. In this work, we used functional magnetic resonance imaging (fMRI) to map the brain areas involved in anesthesia-induced burst-suppression across four mammalian species: humans, long-tailed macaques, common marmosets, and rats. At first, we determined the fMRI signatures of burst-suppression in human EEG-fMRI data. Applying this method to animal fMRI datasets, we found distinct burst-suppression signatures in all species. The burst-suppression maps revealed a marked inter-species difference: in rats the entire neocortex engaged in burst-suppression, while in primates most sensory areas were excluded—predominantly the primary visual cortex. We anticipate that the identified species-specific fMRI signatures and whole-brain maps will guide future targeted studies investigating the cellular and molecular mechanisms of burst-suppression in unconscious states.


Author(s):  
Yasuto Kido ◽  
Isamu Nanchi ◽  
Yasuyuki Fusamae ◽  
Takanobu Matsuzaki ◽  
Takanori Akazawa ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Martin Surbeck ◽  
Cédric Girard-Buttoz ◽  
Liran Samuni ◽  
Christophe Boesch ◽  
Barbara Fruth ◽  
...  

AbstractHere we show that sexual signaling affects patterns of female spatial association differently in chimpanzees and bonobos, indicating its relevance in shaping the respective social systems. Generally, spatial association between females often mirrors patterns and strength of social relationships and cooperation within groups. While testing for proposed differences in female-female associations underlying female coalition formation in the species of the genus Pan, we find only limited evidence for a higher female-female gregariousness in bonobos. While bonobo females exhibited a slightly higher average number of females in their parties, there is neither a species difference in the time females spent alone, nor in the number of female party members in the absence of sexually attractive females. We find that the more frequent presence of maximally tumescent females in bonobos is associated with a significantly stronger increase in the number of female party members, independent of variation in a behavioural proxy for food abundance. This indicates the need to look beyond ecology when explaining species differences in female sociality as it refutes the idea that the higher gregariousness among bonobo females is driven by ecological factors alone and highlights that the temporal distribution of female sexual receptivity is an important factor to consider when studying mammalian sociality.


2021 ◽  
Author(s):  
Saumya Gupta ◽  
Rishi K. Alluri ◽  
Gary J. Rose ◽  
Mark A. Bee

ABSTRACTSexual traits that promote species recognition are important drivers of reproductive isolation, especially among closely related species. Identifying neural processes that shape species differences in recognition is crucial for understanding the causal mechanisms of reproductive isolation. Temporal patterns are salient features of sexual signals that are widely used in species recognition by several taxa, including anurans. Recent advances in our understanding of temporal processing by the anuran auditory system provide an excellent opportunity to investigate the neural basis of species-specific recognition. The anuran inferior colliculus (IC) consists of neurons that are selective for temporal features of calls. Of potential relevance are auditory neurons known as interval-counting neurons (ICNs) that are often selective for the pulse rate of conspecific advertisement calls. Here, we took advantage of a species differences in temporal selectivity for pulsatile advertisement calls exhibited by two cryptic species of gray treefrog (Hyla chrysoscelis and Hyla versicolor) to test the hypothesis that ICNs mediate acoustic species recognition. We tested this hypothesis by examining the extent to which the threshold number of pulses required to elicit behavioral responses from females and neural responses from ICNs was similar within each species but potentially different between the two species. In support of our hypothesis, we found that a species difference in behavioral pulse number thresholds corresponded closely to a parallel species difference in neural pulse number thresholds. However, this relationship held only for ICNs that exhibited band-pass tuning for conspecific pulse rates. Together, these findings suggest that differences in temporal processing of a subset of ICNs provide a mechanistic explanation for reproductive isolation between two cryptic and syntopically breeding treefrog species.Summary StatementTemporal processing by a subset of midbrain auditory neurons plays key roles in decoding information about species identity in anurans.


2021 ◽  
Vol 22 (15) ◽  
pp. 7804
Author(s):  
Tery Yun ◽  
Soeun Shin ◽  
Kyungwon Bang ◽  
Mugeun Lee ◽  
Jung-Ah Cho ◽  
...  

The skin is a barrier between the body and the environment that protects the integrity of the body and houses a vast microbiota. By interacting with the host immune system, the microbiota improves wound healing in mammals. However, in fish, the evidence of the role of microbiota and the type of species on wound healing is scarce. We aimed to examine the wound healing rate in various fish species and evaluate the effect of antibiotics on the wound healing process. The wound healing rate was much faster in two of the seven fish species selected based on habitat and skin types. We also demonstrated that the composition of the microbiome plays a role in the wound healing rate. After antibiotic treatment, the wound healing rate improved in one species. Through 16S rRNA sequencing, we identified microbiome correlates of varying responses on wound healing after antibiotic treatment. These findings indicate that not only the species difference but also the microbiota play a significant role in wound healing in fish.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Gavin A. Scott ◽  
Dylan J. Terstege ◽  
Andrew J. Roebuck ◽  
Kelsea A. Gorzo ◽  
Alex P. Vu ◽  
...  

AbstractThe formation and retention of hippocampus-dependent memories is impacted by neurogenesis, a process that involves the production of new neurons in the dentate gyrus of the hippocampus. Recent studies demonstrate that increasing neurogenesis after memory formation induces forgetting of previously acquired memories. Neurogenesis-induced forgetting was originally demonstrated in mice, but a recent report suggests that the same effect may be absent in rats. Although a general species difference is possible, other potential explanations for these incongruent findings are that memories which are more strongly reinforced become resilient to forgetting or that perhaps only certain types of memories are affected. Here, we investigated whether neurogenesis-induced forgetting occurs in rats using several hippocampus-dependent tasks including contextual fear conditioning (CFC), the Morris Water Task (MWT), and touchscreen paired associates learning (PAL). Neurogenesis was increased following training using voluntary exercise for 4 weeks before recall of the previous memory was assessed. We show that voluntary running causes forgetting of context fear memories in a neurogenesis-dependent manner, and that neurogenesis-induced forgetting is present in rats across behavioral tasks despite differences in complexity or reliance on spatial, context, or object memories. In addition, we asked whether stronger memories are less susceptible to forgetting by varying the strength of training. Even with a very strong training protocol in the CFC task, we still observed enhanced forgetting related to increased neurogenesis. These results suggest that forgetting due to neurogenesis is a conserved mechanism that aids in the clearance of memories.


Sign in / Sign up

Export Citation Format

Share Document