Distinct Molecular Recognition of Calmodulin-Binding Sites in the Neuronal and Macrophage Nitric Oxide Synthases:  A Surface Plasmon Resonance Study†

Biochemistry ◽  
1996 ◽  
Vol 35 (26) ◽  
pp. 8742-8747 ◽  
Author(s):  
Martin Zoche ◽  
Michael Bienert ◽  
Michael Beyermann ◽  
Karl-Wilhelm Koch
2005 ◽  
Vol 14 (04) ◽  
pp. 513-520
Author(s):  
DONG-MYUNG SHIN ◽  
DONG-MEE SONG ◽  
GEEWON CHUNG ◽  
KYEONGTAE KIM

The cuplike structure of calix[4]arenes is one of the most attractive features, which has been observed both in the solid state and in solution. The newly synthesized 5,11,17,23-tetrakis(3-mercaptopropyl)calix[4]arene (1) and 25,26,27,28-tetrakis(5-mercaptopenthoxy)calix[4]arene containing aryl sulfide rings (2), have four alkyl thiol linkages, which allow the calixarenes to attach onto the gold surface. Surface plasmon resonance (SPR) spectroscopy allows us to monitor the binding of calixarene derivatives on the gold surface. The 1 and 2 bind very effectively on the gold surface and self-assembled layers of 1 and 2 produce significant change in SPR signals in 30 min. Calixarenes layers are used as platforms for molecular recognition, where complementary binding sites are easily and selectively introduced. The aromatic molecules used in this study are anthracene, pyrene, coronene and rubrene. The host-guest properties of these aromatic molecules and the calixarene cavity exhibit selectivity of these aromatic molecules. The anthracene, pyrene and coronene have moderate binding affinity to the cavity, and the rubrene does not bind at all.


Haematologica ◽  
2019 ◽  
Vol 105 (11) ◽  
pp. 2631-2638 ◽  
Author(s):  
Kazuya Sakai ◽  
Tatsuhiko Someya ◽  
Kaori Harada ◽  
Hideo Yagi ◽  
Taei Matsui ◽  
...  

von Willebrand factor (VWF) is a blood glycoprotein that plays an important role in platelet thrombus formation through interaction between its A1 domain and platelet glycoprotein Ib. ARC1779, an aptamer to the VWF A1 domain, was evaluated in a clinical trial for acquired thrombotic thrombocytopenic purpura (aTTP). Subsequently, caplacizumab, an anti-VWF A1 domain nanobody, was approved for aTTP in Europe and the United States. We recently developed a novel DNA aptamer, TAGX-0004, to the VWF A1 domain; it contains an artificial base and demonstrates high affinity for VWF. To compare the effects of these three agents on VWF A1, their ability to inhibit ristocetin- or botrocetin-induced platelet aggregation under static conditions was analyzed, and the inhibition of thrombus formation under high shear stress was investigated in a microchip flow chamber system. In both assays, TAGX-0004 showed stronger inhibition than ARC1779, and had comparable inhibitory effects to caplacizumab. The binding sites of TAGX-0004 and ARC1779 were analyzed with surface plasmon resonance performed using alanine scanning mutagenesis of the VWF A1 domain. An electrophoretic mobility shift assay showed that R1395 and R1399 in the A1 domain bound to both aptamers. R1287, K1362, and R1392 contributed to ARC1779 binding, and F1366 was essential for TAGX-0004 binding. Surface plasmon resonance analysis of the binding sites of caplacizumab identified five amino acids in the VWF A1 domain (K1362, R1392, R1395, R1399, and K1406). These results suggested that TAGX-0004 possessed better pharmacological properties than caplacizumab in vitro and might be similarly promising for aTTP treatment.


2017 ◽  
Vol 8 ◽  
pp. 522-529 ◽  
Author(s):  
Daniel Fischer ◽  
Andreas Hertwig ◽  
Uwe Beck ◽  
Volkmar Lohse ◽  
Detlef Negendank ◽  
...  

Background: Gas sensors are very important in several fields like gas monitoring, safety and environmental applications. In this approach, a new gas sensing concept is investigated which combines the powerful adsorption probability of metal oxide conductive sensors (MOS) with an optical ellipsometric readout. This concept shows promising results to solve the problems of cross sensitivity of the MOS concept. Results: Undoped tin oxide (SnOx) and iron doped tin oxide (Fe:SnOx) thin add-on films were prepared by magnetron sputtering on the top of the actual surface plasmon resonance (SPR) sensing gold layer. The films were tested for their sensitivity to several gas species in the surface plasmon resonance enhanced (SPREE) gas measurement. It was found that the undoped tin oxide (SnOx) shows higher sensitivities to propane (C3H8) then to carbon monoxide (CO). By using Fe:SnOx, this relation is inverted. This behavior was explained by a change of the amount of binding sites for CO in the layer due to this iron doping. For hydrogen (H2) no such relation was found but the sensing ability was identical for both layer materials. This observation was related to a different sensing mechanism for H2 which is driven by the diffusion into the layer instead of adsorption on the surface. Conclusion: The gas sensing selectivity can be enhanced by tuning the properties of the thin film overcoating. A relation of the binding sites in the doped and undoped SnOx films and the gas sensing abilities for CO and C3H8 was found. This could open the path for optimized gas sensing devices with different coated SPREE sensors.


2004 ◽  
Vol 186 (6) ◽  
pp. 1758-1768 ◽  
Author(s):  
Christoph Mader ◽  
Carina Huber ◽  
Dieter Moll ◽  
Uwe B. Sleytr ◽  
Margit Sára

ABSTRACT The interaction between S-layer protein SbsB and the secondary cell wall polymer (SCWP) of Geobacillus stearothermophilus PV72/p2 was investigated by real-time surface plasmon resonance biosensor technology. The SCWP is an acidic polysaccharide that contains N-acetylglucosamine, N-acetylmannosamine, and pyruvic acid. For interaction studies, recombinant SbsB (rSbsB) and two truncated forms consisting of either the S-layer-like homology (SLH) domain (3SLH) or the residual part of SbsB were used. Independent of the setup, the data showed that the SLH domain was exclusively responsible for SCWP binding. The interaction was found to be highly specific, since neither the peptidoglycan nor SCWPs from other organisms nor other polysaccharides were recognized. Data analysis from that setup in which 3SLH was immobilized on a sensor chip and SCWP represented the soluble analyte was done in accordance with a model that describes binding of a bivalent analyte to a fixed ligand in terms of an overall affinity for all binding sites. The measured data revealed the presence of at least two binding sites on a single SCWP molecule with a distance of about 14 nm and an overall K d of 7.7 × 10−7 M. Analysis of data from the inverted setup in which the SCWP was immobilized on a sensor chip was done in accordance with an extension of the heterogeneous-ligand model, which indicated the existence of three binding sites with low (K d = 2.6 × 10−5 M), medium (K d = 6.1 × 10−8 M), and high (K d = 6.7 × 10−11 M) affinities. Since in this setup 3SLH was the soluble analyte and the presence of small amounts of oligomers in even monomeric protein solutions cannot be excluded, the high-affinity binding site may result from avidity effects caused by binding of at least dimeric 3SLH. Solution competition assays performed with both setups confirmed the specificity of the protein-carbohydrate interaction investigated.


Sign in / Sign up

Export Citation Format

Share Document