Human Cationic Amino Acid Transporters hCAT-1, hCAT-2A, and hCAT-2B:  Three Related Carriers with Distinct Transport Properties†,‡

Biochemistry ◽  
1997 ◽  
Vol 36 (21) ◽  
pp. 6462-6468 ◽  
Author(s):  
Ellen I. Closs ◽  
Petra Gräf ◽  
Alice Habermeier ◽  
James M. Cunningham ◽  
Ulrich Förstermann
1994 ◽  
Vol 196 (1) ◽  
pp. 93-108
Author(s):  
D K Kakuda ◽  
C L MacLeod

Recent advances have made possible the isolation of the genes and their cDNAs encoding Na(+)-independent amino acid transporters. Two classes of amino acid 'uniporters' have been isolated. One class contains the mCAT (murine cationic amino acid transporter) gene family that encodes proteins predicted to span the membrane 12-14 times and exhibits structural properties similar to the GLUT (glucose transporter) family and to other well-known transporters. The other class consists of two known genes, rBAT (related to B system amino acid transporters) and 4F2hc, that share amino acid sequence similarity with alpha-amylases and alpha-glucosidases. They are type II glycoproteins predicted to span the membrane only once, yet they mediate the Na(+)-independent transport of cationic and zwitterionic amino acids in Xenopus oocytes. Mutations in the human rBAT gene have been identified by Palacín and his co-workers in several families suffering from a heritable form of cystinuria. This important finding clearly establishes a key role for rBAT in cystine transport. The two classes of amino acid transporters are compared with the well-studied GLUT family of Na(+)-independent glucose transporters.


2010 ◽  
Vol 299 (2) ◽  
pp. C230-C239 ◽  
Author(s):  
Jiaguo Zhou ◽  
David D. Kim ◽  
R. Daniel Peluffo

Nitric oxide (NO) plays a central role as a cellular signaling molecule in health and disease. In the heart, NO decreases the rate of spontaneous beating and the velocity and extent of shortening and accelerates the velocity of relengthening. Since the cationic amino acid l-arginine (l-Arg) is the substrate for NO production by NO synthases (NOS), we tested whether the transporters that mediate l-Arg import in cardiac muscle cells represent an intervention point in the regulation of NO synthesis. Electrical currents activated by l-Arg with low apparent affinity in whole cell voltage-clamped rat cardiomyocytes were found to be rapidly and reversibly inhibited by NO donors. Radiotracer uptake studies performed on cardiac sarcolemmal vesicles revealed the presence of high-affinity/low-capacity and low-affinity/high-capacity components of cationic amino acid transport that were inhibited by the NO donor S-nitroso- N-acetyl-dl-penicillamine. NO inhibited uptake in a noncompetitive manner with Ki values of 275 and 827 nM for the high- and low-affinity component, respectively. Fluorescence spectroscopy experiments showed that millimolar concentrations of l-Arg initially promoted and then inhibited the release of endogenous NO in cardiomyocytes. Likewise, l-Arg currents measured in cardiac myocytes voltage clamped in the presence of 460 nM free intracellular Ca2+, a condition in which a Ca-CaM complex should activate endogenous NO production, showed fast activation followed by inhibition of l-Arg transport. The NOS inhibitor N-nitro-l-arginine methyl ester, but not blockers of downstream reactions, specifically removed this inhibitory component. These results demonstrate that NO acutely regulates its own biosynthesis by modulating the availability of l-Arg via cationic amino acid transporters.


2008 ◽  
Vol 129 (3) ◽  
pp. 321-329 ◽  
Author(s):  
Kristin Jaeger ◽  
Friedrich Paulsen ◽  
Johannes Wohlrab

Sign in / Sign up

Export Citation Format

Share Document