Determining Protein−Protein Interactions by Oxidative Cross-Linking of a Glycine-Glycine-Histidine Fusion Protein†

Biochemistry ◽  
1998 ◽  
Vol 37 (13) ◽  
pp. 4397-4406 ◽  
Author(s):  
Kathlynn C. Brown ◽  
Zhonghua Yu ◽  
Alma L. Burlingame ◽  
Charles S. Craik
2008 ◽  
Vol 82 (13) ◽  
pp. 6310-6323 ◽  
Author(s):  
Timothy P. Foster ◽  
Vladimir N. Chouljenko ◽  
K. G. Kousoulas

ABSTRACT Herpes simplex virus type 1 glycoprotein K (gK) and the UL20 protein (UL20p) are coordinately transported to the trans-Golgi network (TGN) and cell surfaces and are required for cytoplasmic virion envelopment at the TGN. In addition, cell surface expression of gK and UL20p is required for virus-induced cell fusion. Previously, confocal microscopy colocalization and intracellular transport experiments strongly suggested direct protein-protein interactions between gK and UL20p. Direct protein-protein interactions between gK and UL20p were demonstrated through reciprocal coimmunoprecipitation experiments, as well as with glutathione S-transferase (GST) pull-down experiments. A fusion protein consisting of the amino-terminal 66 amino acids of UL20p fused in-frame with GST was expressed in Escherichia coli and purified via glutathione column chromatography. Precipitation of GST-UL20p from mixtures of GST-UL20p fusion protein with cellular extracts containing gK specifically coprecipitated gK but not other viral glycoproteins. The purified UL20p-GST fusion protein reacted with all gK-associated protein species. It was concluded that the amino terminus of UL20p, most likely, interacted with gK domain III, which is predicted to lie intracellularly. UL20p-gK domain-specific interactions must serve important functions in the coordinate transport of UL20p and gK to the TGN, because retention of UL20p in the endoplasmic reticulum (ER) via the addition of an ER retention signal at the carboxyl terminus of UL20p forced the ER retention of gK and drastically inhibited intracellular virion envelopment and virus-induced cell fusion.


2017 ◽  
Vol 114 (9) ◽  
pp. 2224-2229 ◽  
Author(s):  
Daniel A. Weisz ◽  
Haijun Liu ◽  
Hao Zhang ◽  
Sundarapandian Thangapandian ◽  
Emad Tajkhorshid ◽  
...  

Photosystem II (PSII), a large pigment protein complex, undergoes rapid turnover under natural conditions. During assembly of PSII, oxidative damage to vulnerable assembly intermediate complexes must be prevented. Psb28, the only cytoplasmic extrinsic protein in PSII, protects the RC47 assembly intermediate of PSII and assists its efficient conversion into functional PSII. Its role is particularly important under stress conditions when PSII damage occurs frequently. Psb28 is not found, however, in any PSII crystal structure, and its structural location has remained unknown. In this study, we used chemical cross-linking combined with mass spectrometry to capture the transient interaction of Psb28 with PSII. We detected three cross-links between Psb28 and the α- and β-subunits of cytochrome b559, an essential component of the PSII reaction-center complex. These distance restraints enable us to position Psb28 on the cytosolic surface of PSII directly above cytochrome b559, in close proximity to the QB site. Protein–protein docking results also support Psb28 binding in this region. Determination of the Psb28 binding site and other biochemical evidence allow us to propose a mechanism by which Psb28 exerts its protective effect on the RC47 intermediate. This study also shows that isotope-encoded cross-linking with the “mass tags” selection criteria allows confident identification of more cross-linked peptides in PSII than has been previously reported. This approach thus holds promise to identify other transient protein–protein interactions in membrane protein complexes.


2021 ◽  
Author(s):  
Dmitri R. Davydov ◽  
Bikash Dangi ◽  
Guihua Yue ◽  
Bhagwat Prasad ◽  
Viktor G. Zgoda

This study aimed on exploration of the system-wide effects of the alcohol-induced increase in the content of cytochrome P450 2E1 (CYP2E1) in the human liver on drug metabolism. Using membrane incorporation of purified CYP2E1 modified with photoreactive crosslinkers benzophenone-4-maleimide (BPM) and 4-(N-succinimidylcarboxy)benzophenone (BPS), we explored the array of its protein-protein interactions (proteome) in human liver microsomes (HLM) with chemical cross-linking mass spectrometry (CXMS). Exposure of bait-incorporated HLM samples to light was followed by isolation of the His-tagged bait protein and its cross-linked aggregates on Ni-NTA agarose. Analyzing the individual bands of SDS-PAGE slabs of thereby isolated protein with the toolset of untargeted proteomics, we detected the cross-linked dimeric and trimeric complexes of CYP2E1 with other drug-metabolizing enzymes. Among the most extensively cross-linked partners of CYP2E1 are cytochromes P450 2A6, 3A4, 2C9, and 4A11. We also detected the conjugates of CYP2E1 with UDP-glucuronosyltransferases (UGTs) 1A6, 1A9, 2B4, 2B15, and 2B17. These results demonstrate the exploratory power of the proposed CXMS strategy and corroborate the concept of tight functional integration in the human drug-metabolizing ensemble through protein-protein interactions of the constituting enzymes. Of particular interest is the observation of efficient cross-linking of CYP2E1 with CYP4A11. This enzyme plays a central role in the synthesis of vasoactive eicosanoids and its interactions with alcohol-inducible CYP2E1 may shed light on the mechanisms of alcohol-induced hypertension.


2021 ◽  
Author(s):  
Laia Miret Casals ◽  
Willem Vannecke ◽  
Kurt Hoogewijs ◽  
Gianluca Arauz ◽  
Marina Gay ◽  
...  

We describe furan as a triggerable ‘warhead’ for site-specific cross-linking using the actin and thymosin β4 (Tβ4)-complex as model of a weak and dynamic protein-protein interaction with known 3D structure...


Sign in / Sign up

Export Citation Format

Share Document