Construction of Three-Dimensional Metal−Organic Frameworks with Helical Character through Coordinative and Supramolecular Interactions

2009 ◽  
Vol 9 (3) ◽  
pp. 1605-1613 ◽  
Author(s):  
Jian-Qiao Chen ◽  
Yue-Peng Cai ◽  
Hua-Cai Fang ◽  
Zheng-Yuan Zhou ◽  
Xu-Lin Zhan ◽  
...  
2021 ◽  
Vol 9 ◽  
Author(s):  
Wang Xie ◽  
Jie Wu ◽  
Xiaochun Hang ◽  
Honghai Zhang ◽  
Kang shen ◽  
...  

By employment of amino-functionalized dicarboxylate ligands to react with d10 metal ions, four novel metal-organic frameworks (MOFs) were obtained with the formula of {[Cd(BCPAB)(μ2-H2O)]}n (1), {[Cd(BDAB)]∙2H2O∙DMF}n (2), {[Zn(BDAB)(BPD)0.5(H2O)]∙2H2O}n (3) and {[Zn(BDAB)(DBPB)0.5(H2O)]∙2H2O}n (4) (H2BCPAB = 2,5-bis(p-carbonylphenyl)-1-aminobenzene; H2BDAB = 1,2-diamino-3,6-bis(4-carboxyphenyl)benzene); BPD = (4,4′-bipyridine); DBPB = (E,E-2,5-dimethoxy-1,4-bis-[2-pyridin-vinyl]-benzene; DMF = N,N-dimethylformamide). Complex 1 is a three-dimensional (3D) framework bearing seh-3,5-Pbca nets with point symbol of {4.62}{4.67.82}. Complex 2 exhibits a 4,4-connected new topology that has never been reported before with point symbol of {42.84}. Complex 3 and 4 are quite similar in structure and both have 3D supramolecular frameworks formed by 6-fold and 8-fold interpenetrated 2D coordination layers. The structures of these complexes were characterized by single crystal X-ray diffraction (SC-XRD), thermal gravimetric analysis (TGA) and powder X-ray diffraction (PXRD) measurements. In addition, the fluorescence properties and the sensing capability of 2–4 were investigated as well and the results indicated that complex 2 could function as sensor for Cu2+ and complex 3 could detect Cu2+ and Ag+via quenching effect.


2012 ◽  
Vol 12 (11) ◽  
pp. 5529-5534 ◽  
Author(s):  
Weiting Yang ◽  
Min Guo ◽  
Fei-Yan Yi ◽  
Zhong-Ming Sun

2020 ◽  
Vol 8 (4) ◽  
pp. 1374-1379 ◽  
Author(s):  
Yutong Wang ◽  
Kai Zhang ◽  
Xiaokang Wang ◽  
Xuelian Xin ◽  
Xiurong Zhang ◽  
...  

An unprecedented three-dimensional (3D) (3,4,5)-czkf topological framework (UPC-38) with one-dimensional (1D) chain secondary building units exhibits strong white light emission.


Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1273 ◽  
Author(s):  
Huacheng Zhang ◽  
Zhaona Liu ◽  
Jian Shen

Recent progress about a novel organic–inorganic hybrid materials, namely cyclodextrins (CDs) modified/coated metal–organic frameworks (MOFs) is summarized by using a special categorization method focusing on the interactions between CDs and MOFs moieties, such as ligand–metal cations interactions, supramolecular interactions including host–guest interactions and hydrogen bonding, as well as covalent bonds. This review mainly focuses on the interactions between CDs and MOFs and the strategy of combining them together, diverse external stimuli responsiveness of CDs-modified/coated MOFs, as well as applications of these hybrid materials to drug delivery and release system, catalysis and detection materials. Additionally, due to the importance of investigating advanced chemical architectures and physiochemical properties of CDs-modified/coated MOFs, a separate section is involved in diverse characterization methods and instruments. Furthermore, this minireview also foresees future research directions in this rapidly developing field.


2008 ◽  
Vol 61 (10) ◽  
pp. 813 ◽  
Author(s):  
En-Cui Yang ◽  
Qing-Qing Liang ◽  
Xiu-Guang Wang ◽  
Xiao-Jun Zhao

To explore the effects of a co-ligand on the construction of mixed-ligand metal–organic frameworks (MOFs), two new triazole-based complexes with a flexible dicarboxylate as a co-ligand, {[Zn4(trz)4(gt)2(H2O)2](H2O)2}n 1 and {[Cd2(trz)2(gt)(H2O)2](H2O)4}n 2 (Htrz = 1,2,4-triazole; H2gt = glutaric acid), were synthesized and their structures were fully characterized by elemental analyses, IR spectroscopy, and single-crystal X-ray crystallography. Their thermal stability and luminescence emissions were further investigated to establish their structure–property relationship. Crystal structure determination showed that 1 is a neutral two-dimensional pillared-bilayer network consisting of 14-membered hydrophobic channels, whereas 2 is an infinite three-dimensional framework constructed from tetranuclear [Cd4(trz)4]4+ subunits. Interestingly, the overall structure of both MOFs can be solely supported by ZnII/CdII and trz anions, and were further consolidated by the introduction of a flexible gt co-ligand. In addition, the carboxylate groups in the co-ligand can also serve as a weak O–H···O hydrogen-bond acceptor to capture guest water molecules. The synchronous weight-loss behaviour of trz and gt anions presented by thermogravometric curves suggest their cooperative contributions to the thermal stability of the MOFs. In contrast, the fluorescence emissions of two complexes are significantly dominated by the core trz ligand, rather than the gt co-ligand and metal ions.


Sign in / Sign up

Export Citation Format

Share Document